首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Because cell shape and alignment, cell-matrix adhesion, and cell-cell contact can all affect growth, and because mechanical strains in vivo are multiaxial and anisotropic, we developed an in vitro system for engineering aligned, rod-shaped, neonatal cardiac myocyte cultures. Photolithographic and microfluidic techniques were used to micropattern extracellular matrices in parallel lines on deformable silicone elastomers. Confluent, elongated, aligned myocytes were produced by varying the micropattern line width and collagen density. An elliptical cell stretcher applied 2:1 anisotropic strain statically to the elastic substrate, with the axis of greatest stretch (10%) either parallel or transverse to the myofibrils. After 24 h, the principal strain parallel to myocytes did not significantly alter myofibril accumulation or expression of atrial natriuretic factor (ANF), connexin-43 (Cx-43), or N-cadherin (by indirect immunofluorescent antibody labeling and immunoblotting) compared with unstretched controls. In contrast, 10% transverse principal strain resulted in continuous staining of actin filaments (rhodamine phalloidin); increased immunofluorescent labeling of ANF, Cx-43, and N-cadherin; and upregulation of protein signal intensity by western blotting. By using microfabrication and microfluidics to control cell shape and alignment on an elastic substrate, we found greater effects for transverse than for longitudinal stretch in regulating sarcomere organization, hypertrophy, and cell-to-cell junctions.  相似文献   

2.
3.
The role of stretch-activated channels (SACs) on the stretch-induced changes of rat atrial myocytes was studied using a computer model that incorporated various ion channels and transporters including SACs. A relationship between the extent of the stretch and the activation of SACs was formulated in the model based on experimental findings to reproduce changes in electrical activity and Ca2+ transients by stretch. Action potentials (APs) were significantly changed by the activation of SACs in the model simulation. The duration of the APs decreased at the initial fast phase and increased at the late slow phase of repolarisation. The resting membrane potential was depolarised from −82 to −70 mV. The Ca2+ transients were also affected. A prolonged activation of SACs in the model gradually increased the amplitude of the Ca2+ transients. The removal of Ca2+ permeability through SACs, however, had little effect on the stretch-induced changes in electrical activity and Ca2+ transients in the control condition. In contrast, the removal of the Na+ permeability nearly abolished these stretch-induced changes. Plotting the peaks of the Ca2+ transients during the activation of the SACs along a time axis revealed that they follow the time course of the Nai+ concentration. The Ca2+ transients were not changed when the Nai+ concentration was fixed to a control value (5.4 mM). These results predicted by the model suggest that the influx of Na+ rather than Ca2+ through SACs is more crucial to the generation of stretch-induced changes in the electrical activity and associated Ca2+ transients of rat atrial myocytes.  相似文献   

4.
We examined the effects of disassembly of microtubules (MT) on the structure and the functions of the Golgi apparatus (GA) in cultured atrial myocytes. MT disassembly with nocodazole led to fragmentation of the GA into small units. The fragmented Golgi units retained their cis-trans polarity and post-cisternal elements, including the trans-Golgi network (TGN). Neither endocytosis of lectin-labeled membrane nor its delivery to the fragmented Golgi units was interrupted by fragmentation of the GA after MT disassembly with nocodazole treatment. A fraction of the secretory granules associated with the fragmented Golgi units was also labeled with the internalized tracer. These results suggest that in nocodazole-treated cultured atrial myocytes, the fragmented Golgi units appear to be structurally and functionally intact despite the altered geometric arrangement of the GA in the cells.  相似文献   

5.
Secretory rates for immunoreactive atrial natriuretic peptide (ANP) by 7 - 8 day-old primary cultures of atrial myocytes from adult rats (with myocyte contraction inhibited by tetrodotoxin (TTX)) were (a) constant for at least two hours, and (b) significantly slowed by forskolin (1, 5, and 25 microM), dibutyryl cyclic adenosine monophosphate (1 mM), or isobutylmethylxanthine (100 microM). The substantial rates of ANP secretion which persisted in cells rendered noncontracting either by inhibiting Ca2+ influx via reduction of external [Ca2+] to less than 10(-7) M or by inhibiting sarcoplasmic reticulum Ca2+ release with 100 microM ryanodine were significantly slowed by 25 microM forskolin, but forskolin sensitivity was lost by cells exposed simultaneously to external Ca2+ concentration of less than 10(-7) M and 100 microM ryanodine. Quiescent myocytes whose ANP secretory rate was depressed by forskolin remained responsive to secretory stimulation by phorbol ester.  相似文献   

6.
Using the primary culture of neonatal rat ventricular myocytes, synthesis and secretion of rat atrial natriuretic peptide (rANP) were studied. Ventricular myocytes in culture, although contained less amounts of cellular immunoreactive (IR)-rANP, secreted substantial amounts of IR-rANP at a rate comparable to that of atrial myocytes. Dexamethasone markedly stimulated synthesis and secretion of IR-rANP by cultured ventricular myocytes in a dose-dependent manner (10(-10)-10(-6) M), of which effect was far more potent than that in atrial myocytes. Testosterone and triiodothyronine also stimulated synthesis and secretion of ventricular IR-rANP to the extent comparable to that of atrial IR-rANP. The present study suggests that tissue-dependent difference in glucocorticoids sensitivity plays an important role in the regulation of developmental ANP gene expression in mammalian heart.  相似文献   

7.
8.
Primary cultures of atrial myocytes were prepared from newborn rats and maintained for 8 days in complete serum-free medium. The culture content of immunoactive atrial natriuretic peptide (ANP) increased from 10 to 25 ng/culture during this time. The cells released immunoactive ANP at a rate of 2 to 3% of culture content per hour in a linear fashion for at least 6 hours. When analyzed by gel filtration the major immunoactive material released by and contained within the cells displayed a molecular weight of approximately 15,000 daltons. The medium and cellular ANP-related peptides were further shown to be indistinguishable by reversed-phase HPLC. When the 15,000 dalton material was incubated with rat serum it was converted to ANP-related material possessing a molecular weight of approximately 3,000 daltons. These results suggest that under basal conditions, atrial myocytes release a large molecular weight form of ANP that is converted in the circulation to a low molecular weight form of ANP, which has been previously identified in plasma.  相似文献   

9.
Phospholipids are believed to play an important role in pathology and physiology of the myocardium. Because of the distinct physico-chemical properties of plasmalogens we studied the plasmalogen content and distribution in the sarcolemma of cultured rat myocytes. Treatment with phospholipase A2 degraded all glycerophospholipids in the outer monolayer. The hydrolysis products were analyzed for plasmalogen content. It is shown that the inner sarcolemmal leaflet is highly enriched in phosphatidylcholine and ethanolamine plasmalogen. This distribution of the plasmalogens might affect bilayer stability and thereby be involved in the destruction of the sarcolemma upon ischemia and reperfusion.  相似文献   

10.
Mechanical load as stimulus for apoptosis and necrosis could be responsible for the loss of cardiomyocytes. Ventricular myocytes from young (3 mo) and old (14-24 mo) rats underwent cyclical mechanical stretch (CMS; 5% elongation, 1 Hz) for 24 h. Spontaneous apoptosis was in myocytes from young rats 0.33 +/- 0.12% and from old rats 1.05 +/- 0.35% [Tdt-mediated dUTP nick-end labeling (TUNEL) assay]; associated with a decrease of Bcl-2. CMS increased the apoptosis to 0.58 +/- 0.18% in myocytes from young rats. Western blot analysis showed that CMS reduced Bcl-2 and increased p53 (young rats). Bax was not changed by CMS. These were confirmed by cytochrome c release (31 +/- 13%) and by the enrichment of cytosolic nucleosomes (11 +/- 8%). CMS did not influence the apoptosis in myocytes from old rats (TUNEL assay, Bcl-2, Bax, or p53). CMS did not cause necrosis in myocytes from young rats. CMS increased the number of necrotic cells by showing the cell membrane rupture in myocytes from old rats (50 +/- 13% 5-hexadecanoylaminofluorescein-positive and 38 +/- 6% propidium iodide-positive cells) as well as by measuring the lactate dehydrogenase release. The results suggest that CMS-induced apoptosis in myocytes of young rats but necrosis in myocytes from old rats, which could be attributed to more stress sensitivity of cells from old rats.  相似文献   

11.
Several animal models of atrial fibrillation (AF) have been developed that demonstrate either atrial structural remodeling or atrial electrical remodeling, but the characteristics and spatiotemporal organization of the AF between the models have not been compared. Thirty-nine dogs were divided into five groups: rapid atrial pacing (RAP), chronic mitral regurgitation (MR), congestive heart failure (CHF), methylcholine (Meth), and control. Right and left atria (RA and LA, respectively) were simultaneously mapped during episodes of AF in each animal using high-density (240 electrodes) epicardial arrays. Multiple 30-s AF epochs were recorded in each dog. Fast Fourier transform was calculated every 1 s over a sliding 2-s window, and dominant frequency (DF) was determined. Stable, discrete, high-frequency areas were seen in none of the RAP or control dogs, four of nine MR dogs, four of six CHF dogs, and seven of nine Meth dogs in either the RA or LA or both. Average DFs in the Meth model were significantly greater than in all other models in both LA and RA except LA DFs in the RAP model. The RAP model was the only one with a consistent LA-to-RA DF gradient (9.5 +/- 0.2 vs. 8.3 +/- 0.3 Hz, P < 0.00005). The Meth model had a higher spatial and temporal variance of DFs and lower measured organization levels compared with the other AF models, and it was the only model to show a linear relationship between the highest DF and dispersion (R(2) = 0.86). These data indicate that structural remodeling of atria (models known to have predominantly altered conduction) leads to an AF characterized by a stable high-frequency area, whereas electrical remodeling of atria (models known to have predominantly shortened refractoriness without significant conduction abnormalities) leads to an AF characterized by multiple high-frequency areas and multiple wavelets.  相似文献   

12.
While hormonal stimuli and mechanical stretch can induced cardiac-specific gene expression and in some cases cellular hypertrophy, the relationship between myocyte contraction frequency, gene expression, and myocyte growth has not been well characterized. In this study a new model system was developed in which cultures of neonatal rat ventricular myocytes were subjected to long term pacing of contractions with pulsatile electrical stimulation. Myocytes submitted to electrical stimulation for 3 days displayed dramatic increases in cellular size and myofibrillar organization, and a 5-10-fold increase in the expression of the cardiac genes atrial natriuretic factor and myosin light chain-2. Atrial natriuretic factor expression induced by electrical stimulation of contractions was inhibited by nifedipine or W7, indicating a dependence on calcium influx and calmodulin activity. Phosphoinositide hydrolysis and cAMP formation were not affected by electrical stimulation suggesting that gene induction occurred independently of the activation of protein kinases C or A above basal levels. These findings show that the cellular events associated with contraction, such as changes in cytoplasmic free calcium levels and/or cellular stretch, may serve as important determinants of myocyte growth and cardiac gene expression.  相似文献   

13.
Summary The regulation of and the intracellular events following a,-adrenergic receptor stimulation in the myocardium still remain to be disclosed. The effect of 1- adrenergic stimulation on phosphoinositide breakdown was studied in cultured neonatal rat ventricular myocytes. Phenylephrine (30 M) stimulated inositolphosphates formation, but only in the presence of 10 mM LiCl this could be measured. The increase was antagonized by prazosin (1 M) but not by propranolol (1 M). The variability in proportional distribution of the three inositolphosphates is discussed.Abbreviations PIP2 Phosphatidylinositol 4,5-bisphosphate - PI Phosphatidylinositol - IP3 Inositol 1,4,5,-bisphosphate - IP2 Inositol 1,4-bisphosphate - IP1 Inositol 1-monophosphate - DG Diacylglycerol - PKC Calcium/phospholipid-dependent protein kinase - PhE Phenylephrine.  相似文献   

14.
Apoptosis of cardiac myocytes has been implicated in cardiac dysfunction due to chronic hemodynamic overload. Reports on the role of apoptosis in the transition from hypertrophy to decompensated heart failure are not unequivocal. In this study we analysed the direct relationship between mechanical overload and induction of apoptosis in an in vitro model of cultured heart cells. Cyclic mechanical stretch was applied to cultured neonatal rat ventricular myocytes and fibroblasts. Several indicators of apoptosis were examined, such as morphological features, caspase-3 activity and DNA fragmentation. Mechanical strain did not induce any significant change in these parameters as compared to non-stretched myocytes or fibroblasts. However, administration of staurosporine, a known inducer of apoptosis, induced massive apoptosis in myocytes as well as fibroblasts. We conclude that this in vitro cell model system lacks a direct link between mechanical stretch and apoptosis. The three-dimensional structure-function relationship of myocardial tissue in the intact heart may elicit stretch-induced molecular signaling cascades in a much more complex way than in monolayer cultures of cardiac cells.  相似文献   

15.
Myocardial ischemia/reperfusion is well recognized as a major cause of apoptotic or necrotic cell death. Neonatal rat cardiac myocytes are intrinsically resistant to hypoxia-induced apoptosis, suggesting a protective role of energy-generating substrates. In the present report, a model of sustained hypoxia of primary cultures of Percoll-enriched neonatal rat cardiac myocytes was used to study specifically the modulatory role of extracellular glucose and other intermediary substrates of energy metabolism (pyruvate, lactate, propionate) as well as glycolytic inhibitors (2-deoxyglucose and iodoacetate) on the induction and maintenance of apoptosis. In the absence of glucose and other substrates, hypoxia (5% CO2 and 95% N2) caused apoptosis in 14% of cardiac myocytes at 3 h and in 22% of cells at 6-8 h of hypoxia, as revealed by sarcolemmal membrane blebbing, nuclear fragmentation, and chromatin condensation (Hoechst staining), terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and DNA laddering. This was accompanied by translocation of cytochrome c from the mitochondria to the cytosol and cleavage of the death substrate poly(ADP-ribose) polymerase. Cleavage of poly(ADP-ribose) polymerase and DNA laddering were prevented by preincubation with the caspase inhibitors benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk) and benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethyl ketone (zDEVD-fmk), indicating activation of caspases in the apoptotic process. The caspase inhibitor zDEVD-fmk also partially inhibited cytochrome c translocation. The presence of as little as 1 mM glucose, but not pyruvate, lactate, or propionate, before hypoxia prevented apoptosis. Inhibiting glycolysis by 2-deoxyglucose or iodoacetate, in the presence of glucose, reversed the protective effect of glucose. This study demonstrates that glycolysis of extracellular glucose, and not other metabolic pathways, protects cardiac myocytes from hypoxic injury and subsequent apoptosis.  相似文献   

16.
Using adenovirus (Adv)-mediated overexpression of constitutively active (ca) and dominant-negative (dn) mutants, we examined whether protein kinase C (PKC)-epsilon, the major novel PKC isoenzyme expressed in the adult heart, was necessary and/or sufficient to induce specific aspects of the hypertrophic phenotype in low-density, neonatal rat ventricular myocytes (NRVM) in serum-free culture. Adv-caPKC-epsilon did not increase cell surface area or the total protein-to-DNA ratio. However, cell shape was markedly affected, as evidenced by a 67% increase in the cell length-to-width ratio and a 17% increase in the perimeter-to-area ratio. Adv-caPKC-epsilon also increased atrial natriuretic factor (ANF) and beta-myosin heavy chain (MHC) mRNA levels 2.5 +/- 0.3- and 2.1 +/- 0.2-fold, respectively, compared with NRVM infected with an empty, parent vector (P < 0.05 for both). Conversely, Adv-dnPKC-epsilon did not block endothelin-induced increases in cell surface area, the total protein-to-DNA ratio, or upregulation of beta-MHC and ANF gene expression. However, the dominant-negative inhibitor markedly suppressed endothelin-induced extracellular signal-regulated kinase (ERK) 1/2 activation. Taken together, these results indicate that caPKC-epsilon overexpression alters cell geometry, producing cellular elongation and remodeling without a significant, overall increase in cell surface area or total protein accumulation. Furthermore, PKC-epsilon activation and downstream signaling via the ERK cascade may not be necessary for cell growth, protein accumulation, and gene expression changes induced by endothelin.  相似文献   

17.
Ventricular myocytes are continuously exposed to fluid shear in vivo by relative movement of laminar sheets and adjacent cells. Preliminary observations have shown that neonatal myocytes respond to fluid shear by increasing their beating rate, which could have an arrhythmogenic effect under elevated shear conditions. The objective of this study is to investigate the characteristics of the fluid shear response in cultured myocytes and to study selected potential mechanisms. Cultured neonatal rat ventricular myocytes that were spontaneously beating were subjected to low shear rates (5-50/s) in a fluid flow chamber using standard culture medium. The beating rate was measured from digital microscopic recordings. The myocytes reacted to low shear rates by a graded and reversible increase in their spontaneous beating rate of up to 500%. The response to shear was substantially attenuated in the presence of the beta-adrenergic agonist isoproterenol (by 86+/-8%), as well as after incubation with integrin-blocking RGD peptides (by 92+/-8%). The results suggest that the beta-adrenergic signaling pathway and integrin activation, which are known to interact, may play an important role in the response mechanism.  相似文献   

18.
Wang JK  Cui CC  Zhang H  Yao QH  Yao XW  Chen XY 《生理学报》2004,56(4):487-492
研究长期使用肾上腺素能受体阻断剂治疗对慢性压力超负荷左心室电重构的影响。新西兰兔通过肾上腹主动脉次全结扎诱发慢性压力超负荷,10周后行心脏超声检查,并采用全细胞膜片钳技术分别记录腹主动脉结扎组(简称结扎组)、腹主动脉结扎 Carvedilol 干预组(简称Carvedilol组)及正常对照组(简称对照组)动物左室肌中层细胞的动作电位(action potential,AP)、内向整流钾电流(inward rectifier potassium current,IKi)、延迟整流钾电流(delayed rectifier potassium current,IK)及Na /Ca2 交换体电流。结果表明,结扎组的左室质量指数较对照组明显升高,Carvedilol组较结扎组明显降低(P<0.01)。在2 s的基础周长下,动作电位持续时间(以90%的复极时间表示,简称APD90)在对照组、结扎组及Carvedilol组分别为522.0±19.5 ms(n=6)、664.7± 46.2 ms(n=7)、567.8±14.3 ms(n=8),结扎组同对照组相比,P<0.01,Carvedilol组同结扎组相比,P<0.05。在测试电位为-100mV时,IKi电流密度(pA/pF)在对照组、结扎组及Carvedilol组分别为-11.8±0.50(n=8),-8.07±0.28 (n=8),-10.69±0.35(n=8),结扎组与对照组及Carvedilol组相比,P<0.01。在测试电位为 50 mV时,IK尾电流密度(pA/pF)在对照组、结扎组及Carvedilol组分别为0.59±0.40(n=  相似文献   

19.
Summary In the Golgi region of cultured rat atrial myocytes, condensed secretory protein was seen in Golgi-associated tubules or cisternae which lay beyond, and often separated from, the remainder of the Golgi stacks. These structures appeared to be involved in packaging of condensed secretory protein into atrial granules. Binding sites of HRP-conjugated wheat-germ agglutinin (WGA) in saponin-treated cultured atrial myocytes were examined by electron microscopy with special reference to atrial granules and the tubular structures associated with the Golgi stacks. HRP reaction products were observed in both trans-cisternae of the Golgi stacks and the associated tubular structures. While the majority of atrial granules were devoid of reaction products, some granules, which were connected to the WGA-positive tubular structures in the vicinity of the Golgi trans-cisternae, showed HRP reaction products at their connected necks. Similar results were obtained when sections of the cells embedded in Lowicryl K4M were labeled with WGA coupled to colloidal gold (G-WGA); the Golgi complex was G-WGA positive, whereas no specific binding of G-WGA to atrial granules was observed. These results suggest that glycoproteins and/or glycolipids with oligosaccharides recognized by WGA in the Golgi transcisternae, may be separated from atrial natriuretic peptides which are packaged into atrial granules.Abbreviations ANP atrial natriuretic peptide - HRP horseradish peroxidase - M199 medium 199 - TGN trans-Golgi network - WGA wheat-germ agglutinin - G-WGA WGA coupled to colloidal gold  相似文献   

20.
Summary Neonatal rat cardiomyocytes were cultured on extracellular matrix components laminin and collagens I+III to examine effects of extracellular matrix on the assembly of cytoskeletal proteins during myofibrillogenesis. Myofibril assembly was visualized by immunofluorescence of marker proteins for myofibrils (f-actin for I bands and -actinin for Z bands), focal adhesions (vinculin), and transmembrane extracellular matrix receptors (1 integrin) as cells spread for various times in culture. By 4 h in culture, f-actin appeared organized into nonstriated stress-fiber-like structures while -actinin, vinculin and 1 integrin were localized in small streaks and beads. Subsequently, striated patterns were observed sequentially in the intracellular cytoskeletal components -actinin, vinculin, f-actin, and then in the transmembrane 1 integrin receptor. These data support an earlier model for sarcomerogenesis in which stress-fiber-like structures serve as initial scaffolds upon which -actinin and then vinculin-containing costameres are assembled. This sequential and temporal assembly was the same on both laminin and collagens I+III. A quantitative difference, however, was apparent on the 2 matrices. There was an increased appearance on collagens I+III of rosettes (also called podosomes or cortical actin-containing bodies in other cells) which consisted of an f-actin core surrounded by -actinin, vinculin and 1 integrin rims. The increased incidence of rosettes in neonatal myocytes on collagens I+III suggests that these cytoskeletal complexes are involved in recognition and interaction with extracellular matrix components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号