首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial cells (EC) were cocultured with allogeneic PBL, CD4+ T cells, or CD8+ T cells, and the degrees of EC activation induced examined by determining patterns of endothelial class I and class II MHC and intercellular adhesion molecule-1 (ICAM-1) expression. Coculture with PBL or CD8+ T cells uniformly increases class I MHC and ICAM-1 expression on all EC within a culture, but induces class II MHC expression on only a subpopulation(s) of EC. This heterogeneous EC response to coculture contrasts with the uniform class II expression on all EC induced by IFN-gamma in replicate wells. CD4+ T cells, when compared to equal numbers of unfractionated PBL or CD8+ T cells, are more effective at increasing class I MHC and ICAM-1 but are unable to induce class II MHC expression. The failure of CD4+ T cells to induce EC class II MHC Ag is not due to insufficient activation of the T cells, as PHA-activated CD4+ T cells also do not induce significant class II expression. In addition, conditioned media (CM) from CD4+ T cell/EC contain greater levels of immunoreactive IFN-gamma than do CM from PBL/EC cocultures. Rather, CD4+ T cells appear to actively inhibit the induction of EC class II Ag but not class I or ICAM-1 by IFN-gamma. Inhibition occurs at the time of induction, as CD4+ T cells are not capable of down-regulating previously induced class II Ag. CM from CD4+/EC (but not PBL/EC) cocultures also inhibits IFN-gamma induction of EC class II MHC expression. The inhibitory activity is generated during CD4+ T cell-EC cell contact, and is enhanced by PHA. The inhibitory activity(ies) of the CD4+/EC-CM is as yet unidentified, and is only minimally reversible by cocktails of neutralizing antibodies directed against TNF-alpha, TNF-beta (lymphotoxin), IFN-alpha and IFN-beta. In conclusion, CD4+ and CD8+ T cells are each effective activators of EC, but the patterns of activation produced by these subsets are quite distinct, largely due to generation of a soluble inhibitor(s) of class II MHC induction during coculture of CD4+ T cells with EC.  相似文献   

2.
Murine T lymphocytes recognize nominal Ag presented by class I or class II MHC molecules. Most CD8+ T cells recognize Ag presented in the context of class I molecules, whereas most CD4+ cells recognize Ag associated with class II molecules. However, it has been shown that a proportion of T cells recognizing class I alloantigens express CD4 surface molecules. Furthermore, CD4+ T cells are sufficient for the rejection of H-2Kbm10 and H-2Kbm11 class I disparate skin grafts. It has been suggested that the CD4 component of an anti-class I response can be ascribed to T cells recognizing class I determinants in the context of class II MHC products. To examine the specificity and effector functions of class I-specific HTL, CD4+ T cells were stimulated with APC that differed from them at a class I locus. Specifically, a MLC was prepared involving an allogeneic difference only at the Ld region. CD4+ clones were derived by limiting dilution of bulk MLC cells. Two clones have been studied in detail. The CD4+ clone 46.2 produced IL-2, IL-3, and IFN-gamma when stimulated with anti-CD3 mAb, whereas the CD4+ clone 93.1 secreted IL-4 in addition to IL-2, IL-3, and IFN-gamma. Cloned 46.2 cells recognized H-2Ld directly, whereas recognition of Ld by 93.1 apparently was restricted by class II MHC molecules. Furthermore, cytolysis by both clones 46.2 and 93.1 was inhibited by the anti-CD4 mAb GK1.5. These results demonstrate that CD4+ T cells can respond to a class I difference and that a proportion of CD4+ T cells can recognize class I MHC determinants directly as well as in the context of class II MHC molecules.  相似文献   

3.
We investigated interactions between CD4+ T cells and dendritic cells (DC) necessary for presentation of exogenous Ag by DC to CD8+ T cells. CD4+ T cells responding to their cognate Ag presented by MHC class II molecules of DC were necessary for induction of CD8+ T cell responses to MHC class I-associated Ag, but their ability to do so depended on the manner in which class II-peptide complexes were formed. DC derived from short-term mouse bone marrow culture efficiently took up Ag encapsulated in IgG FcR-targeted liposomes and stimulated CD4+ T cell responses to Ag-derived peptides associated with class II molecules. This CD4+ T cell-DC interaction resulted in expression by the DC of complexes of class I molecules and peptides from the Ag delivered in liposomes and permitted expression of the activation marker CD69 and cytotoxic responses by naive CD8+ T cells. However, while free peptides in solution loaded onto DC class II molecules could stimulate IL-2 production by CD4+ T cells as efficiently as peptides derived from endocytosed Ag, they could not stimulate induction of cytotoxic responses by CD8+ T cells to Ag delivered in liposomes into the same DC. Signals requiring class II molecules loaded with endocytosed Ag, but not free peptide, were inhibited by methyl-beta-cyclodextrin, which depletes cell membrane cholesterol. CD4+ T cell signals thus require class II molecules in cholesterol-rich domains of DC for induction of CD8+ T cell responses to exogenous Ag by inducing DC to process this Ag for class I presentation.  相似文献   

4.
Kim MK  Choi YL  Kim MK  Kim SH  Choi EY  Park WS  Bae YM  Woo SK  Park SH 《FEBS letters》2003,546(2-3):379-384
Major histocompatibility complex (MHC) class II surface levels on thymocytes increase after CD99 ligation. The functional implication of the up-regulated MHC class II was assessed by engaging MHC class II on CD99-ligated cells. MHC class II engagement down-modulated surface levels of T cell receptor and MHC molecules, and inhibited apoptosis of CD99-ligated thymocytes and CEM tumor cells, antagonistic effects on the previously reported CD99 functions. The results were reproducible regardless of the order of ligation of MHC class II and CD99. We suggest that signaling via MHC class II on CD99-engaged cells might be involved in the thymic maturation process by damping CD99 ligation effects.  相似文献   

5.
Immature thymocytes, which coexpress CD4 and CD8, give rise to mature CD4+CD8- and CD4-CD8+ T cells. Only those T cells that recognize self-MHC are selected to mature, a process known as positive selection. The specificity of the T cell antigen receptor (TCR) for class I or class II MHC influences the commitment to a CD4 or CD8 lineage. This may occur by a directed mechanism or by stochastic commitment followed by a selection step that allows only CD8+, class I-specific and CD4+, class II-specific cells to survive. We have generated a mouse line expressing a CD8 transgene under the control of the T cell-specific CD2 regulatory sequences. Although constitutive CD8 expression does not affect thymic selection of CD4+ cells, selection of a class I-specific TCR in the CD8 subset is substantially improved. This outcome is consistent with a model for positive selection in which selection occurs at a developmental stage in which both CD4 and CD8 are expressed, and positive selection by class I MHC generates an instructive signal that directs differentiation to a CD8 lineage.  相似文献   

6.
CD4+ T cells that are activated by a MHC class II/peptide encounter can induce maturation of APCs and promote cytotoxic CD8+ T cell responses. Unfortunately, the number of well-defined tumor-specific CD4+ T cell epitopes that can be exploited for adoptive immunotherapy is limited. To determine whether Th cell responses can be generated by redirecting CD4+ T cells to MHC class I ligands, we have introduced MHC class I-restricted TCRs into postthymic murine CD4+ T cells and examined CD4+ T cell activation and helper function in vitro and in vivo. These experiments indicate that Ag-specific CD4+ T cell help can be induced by the engagement of MHC class I-restricted TCRs in peripheral CD4+ T cells but that it is highly dependent on the coreceptor function of the CD8beta-chain. The ability to generate Th cell immunity by infusion of MHC class I-restricted Th cells may prove useful for the induction of tumor-specific T cell immunity in cases where MHC class II-associated epitopes are lacking.  相似文献   

7.
TCR ligation by the self-peptide-associated MHC molecules is essential for T cell development in the thymus, so that class II MHC-deficient mice do not generate CD4(+)CD8(-) T cells. The present results show that the administration of anti-TCR mAb into class II MHC-deficient mice restores the generation of CD4(+)CD8(-) T cells in vivo. The CD4 T cells were recovered in the thymus, peripheral blood, and the spleen, indicating that the anti-TCR treatment is sufficient for peripheral supply of newly generated CD4 T cells. Unlike peripheral CD4 T cells that disappeared within 5 wk after the treatment, CD4(+)CD8(-) thymocytes remained undiminished even after 5 wk, suggesting that CD4 T cells in the thymus are maintained separately from circulating CD4 T cells and even without class II MHC molecules. It was also found that the mass of medullary region in the thymus, which was reduced in class II MHC-deficient mice, was restored by the anti-TCR administration, suggesting that the medulla for CD4(+)CD8(-) thymocytes is formed independently of the medulla for CD4(-)CD8(+) thymocytes. These results indicate that in vivo anti-TCR treatment in class II MHC-deficient mice restores the generation of circulating CD4 T cells and optimal formation of the medulla in the thymus, suggesting that anti-TCR Ab may be useful for clinical treatment of class II MHC deficiencies.  相似文献   

8.
It is generally accepted that as the result of positive thymic selection, CD8-expressing T cells recognize peptide antigens presented in the context of MHC class I molecules and CD4-expressing T cells interact with peptide antigens presented by MHC class II molecules. Here we report the generation of TCRalpha/beta(+), CD3(+), CD4(+), CD8(-), MHC class I-restricted alloreactive T-cell clones which were induced using peripheral blood mononuclear cells from healthy individuals following in vitro stimulation with transporter associated with antigen processing (TAP)-deficient cell lines T2. The CD4(+) T-cell clones showed an HLA-A2.1-specific proliferative response against T2 cells which was inhibited by anti-CD3 and anti-CD4 monoclonal antibodies. These results suggest that interaction of the TCR with peptide-bound HLA class I molecules contributes to antigen-specific activation of these co-receptor-mismatched T-cell clones. Antigen recognition by alloreactive MHC class I-restricted CD4(+) T cells was inhibited by removing peptides bound to HLA molecules on T2 cells suggesting that the alloreactive CD4(+) T cells recognize peptides that bind in a TAP-independent manner to HLA-A2 molecules. The existence of such MHC class I-restricted CD4(+) T cells which can recognize HLA-A2 molecules in the absence of TAP function may provide a basis for the development of immunotherapy against TAP-deficient tumor variants which would be tolerant to immunosurveillance by conventional MHC class I-restricted cytotoxic lymphocytes.  相似文献   

9.
Activation of MHC-restricted rat T cells by cloned syngeneic thyrocytes   总被引:1,自引:0,他引:1  
We have previously demonstrated that rat thyrocytes express MHC class II Ag (RT1.B&D) in response to IFN-gamma. To determine whether MHC class II-positive thyrocytes can be recognized by MHC-restricted T cells, we used our clone of rat thyroid cells (1B-6) derived from the Fisher rat thyroid cell line (FRTL-5) and known to express MHC class II Ag in response to recombinant rat IFN-gamma. CD4+ and CD8+ normal syngeneic Fisher rat spleen T cells were selected by flow cytometry and averaged greater than 96% purity. We demonstrated that irradiated MHC class II-positive but not class II-negative 1B-6 thyrocytes stimulated CD4+ T cells in a primary sensitization reaction over 4 days. In contrast, CD8+ T cells had no response in similar experiments. This stimulation of CD4+ T cells was dose dependent for 1B-6 thyrocytes and was abrogated by anti-rat MHC class II mAb (MRC OX-6). Autoreactive (Fisher) and alloreactive (Buffalo) T cell lines and isolated CD4+ T cells derived from these lines, which were developed against Fisher rat spleen cells, similarly recognized MHC class II Ag expressed on 1B-6 cells but had no detectable response to 1B-6 MHC class II-negative thyrocytes or MHC class II-positive human thyroid cells. The CD4+ T cell recognition of 1B-6 cells via MHC class II Ag supports our previous data with autologous human thyroid T cell co-cultures and is indicative of an autospecific role for thyrocytes in the development of autoimmune thyroiditis.  相似文献   

10.
Twenty-seven different CD45 monoclonal antibodies (mAb) were assessed for their ability to block cytotoxicity of alloreactive CD4+ MHC class II-specific or CD8+ class I-specific human T cell clones (n = 3 and 5, respectively). Twelve of 27 blocked the former but only 1/27 the latter, although all 27 significantly inhibited MHC-unrestricted lysis of K562 cells by either CD4+ or CD8+ clones. MAb pretreatment of effector cells but not target cells resulted in retention of blocking. Crosslinking the CD45 with goat anti-mouse Ig serum did not result in blockade of lysis by class I-specific clones or reveal blocking of class II-specific clones not inhibited by mAb alone. These results suggest that CD45 molecules may be predominantly involved in MHC class II-specific but not class I-specific allocytotoxicity as well as MHC-unrestricted natural killer-like cytotoxicity.  相似文献   

11.
Spontaneous CD8+ T cell activation in MRL-Faslpr mice is B cell dependent. It is unclear whether this B-dependent activation is mediated by direct Ag presentation via MHC class I proteins (i.e., cross-presentation) or whether activation occurs by an indirect mechanism, e.g., via effects on CD4+ cells. To determine how CD8+ T cell activation is promoted by B cells, we created mixed bone marrow chimeras where direct MHC class I Ag presentation by B cells was abrogated while other leukocyte compartments could express MHC class I. Surprisingly, despite the absence of B cell class I-restricted Ag presentation, CD8+ T cell activation was intact in the chimeric mice. Therefore, the spontaneous B cell-dependent CD8+ T cell activation that occurs in systemic autoimmunity is not due to direct presentation by B cells to CD8+ T cells.  相似文献   

12.
We studied whether CD8 T cell responses that are mediated by unconventional MHC class Ib molecules are IL-15 dependent in mice. CD8(+) T cell responses to Listeria monocytogenes infection that are restricted by the MHC class Ib molecule H2-M3 decreased in the absence of IL-15, whereas other primary MHC class Ib- and MHC class Ia-restricted responses were IL-15 independent. This result was confirmed in MHC class Ia-deficient mice in which IL-15 deficiency also reduced H2-M3-restricted but not all CD8 T cell responses to L. monocytogenes. IL-15 deficiency did not affect proliferation or survival of responding H2-M3-restricted CD8(+) T cells, but IL-15 was necessary to detect H2-M3-restricted CD8(+) T cells in naive mice. This finding suggests that these CD8(+) T cells require IL-15 during development, but become IL-15 independent after activation. IL-15 was necessary for the survival of most class Ib-restricted CD8(+) T cells, starting at the mature thymocyte stage in naive mice, but does not affect a distinct CD44(low)/CD122(low) subpopulation. These data suggest that the nature of the selecting MHC class Ib molecule determines whether CD8(+) T cells acquire IL-15 dependence during thymic development.  相似文献   

13.
T cells bearing the alpha beta T cell receptor (TCR) can be divided into CD4+8- and CD4-8+ subsets which develop in the thymus from CD4+8+ precursors. The commitment to the CD4 and CD8 lineage depends on the binding of the alpha beta TCR to thymic major histocompatibility complex (MHC) coded class II and class I molecules, respectively. In an instructive model of lineage commitment, the binding of the alpha beta TCR, for instance to class I MHC molecules, would generate a specific signal instructing the CD4+8+ precursors to switch off the expression of the CD4 gene. In a selective model, the initial commitment, i.e. switching off the expression of either the CD4 or the CD8 gene would be a stochastic event which is then followed by a selective step rescuing only CD4+ class II and CD8+ class I specific T cells while CD4+ class I and CD8+ class II specific cells would have a very short lifespan. The selective model predicts that a CD8 transgene which is expressed in all immature and mature T cells should rescue CD4+ class I MHC specific T cells from cell death. We have performed experiments in CD8 transgenic mice which fail to support a selective model and we present data which show that the binding of the alpha beta TCR to thymic class I MHC molecules results in up-regulation of the TCR in the CD4+8+ population. Therefore, these experiments are consistent with an instructive model of lineage commitment.  相似文献   

14.
MHC class I-specific inhibitory receptors are expressed by a subset of memory-phenotype CD8(+) T cells. Similar to NK cells, MHC class I-specific inhibitory receptors might subserve on T cells an important negative control that participates to the prevention of autologous damage. We analyzed here human CD8(+) T cells that express the Ig-like MHC class I-specific inhibitory receptors: killer cell Ig-like receptor (KIR) and CD85j. The cell surface expression of Ig-like inhibitory MHC class I receptors was found to correlate with an advanced stage of CD8(+) T cell maturation as evidenced by the reduced proliferative potential of KIR(+) and CD85j(+) T cells associated with their high intracytoplasmic perforin content. This concomitant regulation might represent a safety mechanism to control potentially harmful cytolytic CD8(+) T cells, by raising their activation threshold. Yet, KIR(+) and CD85j(+) T cells present distinct features. KIR(+)CD8(+) T cells are poor IFN-gamma producers upon TCR engagement. In addition, KIR are barely detectable at the surface of virus-specific T cells during the course of CMV or HIV-1 infection. By contrast, CD85j(+)CD8(+) T cells produce IFN-gamma upon TCR triggering, and represent a large fraction of virus-specific T cells. Thus, the cell surface expression of Ig-like inhibitory MHC class I receptors is associated with T cell engagement into various stages of the cytolytic differentiation pathway, and the cell surface expression of CD85j or KIR witnesses to the history of qualitatively and/or quantitatively distinct T cell activation events.  相似文献   

15.
NK cells are able to kill virus-infected and tumor cells via a panel of lysis receptors. Cells expressing class I MHC proteins are protected from lysis primarily due to the interactions of several families of NK receptors with both classical and nonclassical class I MHC proteins. In this study we show that a class I MHC-deficient melanoma cell line (1106mel) is stained with several Ig-fused lysis receptors, suggesting the expression of the appropriate lysis ligands. Surprisingly, however, this melanoma line was not killed by CD16-negative NK clones. The lack of killing is shown to be the result of homotypic CD66a interactions between the melanoma line and the NK cells. Furthermore, 721.221 cells expressing the CD66a protein were protected from lysis by YTS cells and by NK cells expressing the CD66a protein. Redirected lysis experiments demonstrated that the strength of the inhibitory effect is correlated with the levels of CD66a expression. Finally, the expression of CD66a protein was observed on NK cells derived from patients with malignant melanoma. These findings suggest the existence of a novel class I MHC-independent inhibitory mechanism of human NK cell cytotoxicity. This may be a mechanism that is used by some of the class I MHC-negative melanoma cells to evade attack by CD66a-positive NK cells.  相似文献   

16.
Uterine dendritic cells (DCs) are critical for activating the T cell response mediating maternal immune tolerance of the semiallogeneic fetus. GM-CSF (CSF2), a known regulator of DCs, is synthesized by uterine epithelial cells during induction of tolerance in early pregnancy. To investigate the role of GM-CSF in regulating uterine DCs and macrophages, Csf2-null mutant and wild-type mice were evaluated at estrus, and in the periconceptual and peri-implantation periods. Immunohistochemistry showed no effect of GM-CSF deficiency on numbers of uterine CD11c(+) cells and F4/80(+) macrophages at estrus or on days 0.5 and 3.5 postcoitum, but MHC class II(+) and class A scavenger receptor(+) cells were fewer. Flow cytometry revealed reduced CD80 and CD86 expression by uterine CD11c(+) cells and reduced MHC class II in both CD11c(+) and F4/80(+) cells from GM-CSF-deficient mice. CD80 and CD86 were induced in Csf2(-/-) uterine CD11c(+) cells by culture with GM-CSF. Substantially reduced ability to activate both CD4(+) and CD8(+) T cells in vivo was evident after delivery of OVA Ag by mating with Act-mOVA males or transcervical administration of OVA peptides. This study shows that GM-CSF regulates the efficiency with which uterine DCs and macrophages activate T cells, and it is essential for optimal MHC class II- and class I-mediated indirect presentation of reproductive Ags. Insufficient GM-CSF may impair generation of T cell-mediated immune tolerance at the outset of pregnancy and may contribute to the altered DC profile and dysregulated T cell tolerance evident in infertility, miscarriage, and preeclampsia.  相似文献   

17.
Antiviral HLA class II-restricted cytotoxic CD4+ clones have been relatively well characterized in vitro but their significance in the immune response remains unknown. Here anti-influenza A and anti-EBV CD4+ CTL have been studied by using permanent cell lines either untreated or depleted of CD8+ cells. In bulk cultures, HLA class I-restricted anti-viral CD8+ CTL account for all of the detectable killer cell activity, whereas after elimination of CD8+ cells an HLA class II-restricted killer activity mediated by CD4+/2H4-/4B4+ cells was consistently observed. The CD4+ CTL were fully differentiated in all of the cultures tested from the third in vitro passage because they could be demonstrated immediately after elimination of CD8+ cells. These CD4+ killer cells were equivalent to the CD8+ cells in terms of their lytic capacity. The absence of any class II-restricted antiviral activity in bulk cultures seems to be related to the very small numbers of CD4+ cells present in these antiviral cell lines. However, CD4+ cytolytic activity could not be detected during the first two in vitro passages, even when limiting dilution analysis of the CTL precursors were performed, showing that the killer function of Th cells differentiate only after several in vitro stimulations.  相似文献   

18.
Peptide specificity of thymic selection of CD4+CD25+ T cells.   总被引:21,自引:0,他引:21  
The CD4(+)CD25(+) regulatory T cells can be found in the thymus, but their need to undergo positive and negative selection has been questioned. Instead, it has been hypothesized that CD4(+)CD25(+) cells mature following TCR binding to MHC backbone, to low abundant MHC/peptide complexes, or to class II MHC loaded with peripheral autoantigens. In all these circumstances, processes that are distinct from positive and negative selection would govern the provenance of CD4(+)CD25(+) cells in the thymus. By comparing the development of CD4(+)CD25(-) and CD4(+)CD25(+) cells in mice expressing class II MHC molecules bound with one or many peptide(s), we show that the CD4(+)CD25(+) cells appear during natural selection of CD4(+) T cells. The proportion of CD4(+)CD25(+) cells in the population of CD4(+) thymocytes remains constant, and their total number reflects the complexity of selecting class II MHC/peptide complexes. Hence, thymic development of CD4(+)CD25(+) cells does not exclusively depend on the low-density, high-affinity MHC/peptide complexes or thymic presentation of peripheral self-Ags, but, rather, these cells are selected as a portion of the natural repertoire of CD4(+) T cells. Furthermore, while resistant to deletion mediated by endogenous superantigen(s), these cells were negatively selected on class II MHC/peptide complexes. We postulate that while the CD4(+)CD25(+) thymocytes are first detectable in the thymic medulla, their functional commitment occurs in the thymic cortex.  相似文献   

19.
MLR in various combinations with class I H-2 disparity revealed that there are three patterns of MLR in the aspect of responding T subset (CD4 vs CD8) dominance. Irrespective of the CD8 vs CD4 dominance, a single i.v. administration of class I-disparate allogeneic spleen cells resulted in almost complete abrogation of anti-class I proliferative capacity of both CD4+ and CD8+ T cells in six combinations. The suppression of proliferative responses was correlated with the striking reduction in the ability to produce IL-2 upon stimulation with the relevant class I alloantigens. In contrast, i.v. presensitized recipient mice exhibiting only marginal MLR/Il-2 production could generate comparable magnitudes of anti-allo class I CTL as well as graft rejection responses to those induced by normal unpresensitized mice. The administration in vivo of anti-CD4 antibody along with the i.v. presensitization not only suppressed the generation of CTL responses by spleen cells but also induced appreciable prolongation of allo-class I-disparate skin grafts under conditions in which neither alone did it. These results demonstrate that 1) the suppression of graft rejection responses is not necessarily reflected on the reduction of MLR; 2) CD8+ CTL precursors responsible for graft rejection can be activated by either allo-class I-reactive CD8+ or CD4+ Th cells; 3) i.v. presensitization induces functional elimination of CD8+ and CD4+ proliferative/IL-2-producing T cells but not of CD8+ CTL precursors and CD4+ Th whose capacity is expressed by assistance of CTL induction but not by their own proliferation. Thus, this study illustrates the heterogeneity of class I alloantigen-reactive CD4+ T cells in the aspect of their capacity to proliferate themselves vs contribute to CTL induction as well as graft rejection.  相似文献   

20.
CD4 T cells are both necessary and sufficient to mediate acute cardiac allograft rejection in mice. This process requires "direct" engagement of donor MHC class II molecules. That is, acute rejection by CD4+ T cells requires target MHC class II expression by the donor and not by the host. However, it is unclear whether CD4+ T cell rejection requires MHC class II expression on donor hemopoietic cells, nonhemopoietic cells, or both. To address this issue, bone marrow transplantation in mice was used to generate chimeric heart donors in which MHC class II was expressed either on somatic or on hemopoietic cells. We report that direct recognition of hemopoietic and nonhemopoietic cells are individually rate limiting for CD4+ T cell-mediated rejection in vivo. Importantly, active immunization with MHC class II(+) APCs triggered acute rejection of hearts expressing MHC class II only on the somatic compartment. Thus, donor somatic cells, including endothelial cells, are not sufficient to initiate acute rejection; but they are necessary as targets of direct alloreactive CD4 T cells. Taken together, results support a two-stage model in which donor passenger leukocytes are required to activate the CD4 response while direct interaction with the somatic compartment is necessary for the efferent phase of acute graft rejection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号