首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Using data from a partial protein sequence analysis of ribosomal proteins derived from the archaebacterium Methanococcus vannielii, oligonucleotide probes were synthesized. The probes enabled us to localize several ribosomal protein genes and to determine their nucleotide sequences. The amino acid sequences that were deduced from the genes correspond to proteins L12 and L10 from the rif operon, according to the genome organization in Escherichia coli, and to proteins L23 and L2, which have comparable locations, as in the Escherichia coli S10 operon. Various degrees of similarity were found when the four proteins were compared with the corresponding ribosomal proteins of prokaryotic or eukaryotic organisms. The highest sequence homology was found in counterparts from other archaebacteria, such as Halobacterium marismortui, Halobacterium halobium, or Sulfolobus. In general, the M. vannielii protein sequences were more related to the eukaryotic kingdom than to the Gram-positive or Gram-negative eubacteria. On the other hand, the organization of the ribosomal protein genes clearly follows the operon structure of the Escherichia coli genome and is different from the monocistronic eukaryotic gene arrangements. The protein coding regions were not interrupted by introns. Furthermore, the Shine-Dalgarno type sequences of methanogenic bacteria are homologous with those of eubacteria, and also their terminator regions are similar.  相似文献   

12.
13.
We investigated the regulation of the S10 ribosomal protein (r-protein) operon among members of the gamma subdivision of the proteobacteria, which includes Escherichia coli. In E. coli, this 11-gene operon is autogenously controlled by r-protein L4. This regulation requires specific determinants within the untranslated leader of the mRNA. Secondary structure analysis of the S10 leaders of five enterobacteria (Salmonella typhimurium, Citrobacter freundii, Yersinia enterocolitica, Serratia marcescens, and Morganella morganii) and two nonenteric members of the gamma subdivision (Haemophilus influenzae and Vibrio cholerae) shows that these foreign leaders share significant structural homology with the E. coli leader, particularly in the region which is critical for L4-mediated autogenous control in E. coli. Moreover, these heterologous leaders produce a regulatory response to L4 oversynthesis in E. coli. Our results suggest that an E. coli-like L4-mediated regulatory mechanism may operate in all of these species. However, the mechanism is not universally conserved among the gamma subdivision members, since at least one, Pseudomonas aeruginosa, does not contain the required S10 leader features, and its leader cannot provide the signals for regulation by L4 in E. coli. We speculate that L4-mediated autogenous control developed during the evolution of the gamma branch of proteobacteria.  相似文献   

14.
15.
16.
17.
18.
19.
20.
The mechanisms for regulation of ribosomal gene expression have been characterized in eukaryotes and eubacteria, but not yet in archaebacteria. We have studied the regulation of the synthesis of ribosomal proteins MvaL1, MvaL10, and MvaL12, encoded by the MvaL1 operon of Methanococcus vannielii, a methanogenic archaebacterium. MvaL1, the homolog of the regulatory protein L1 encoded by the L11 operon of Escherichia coli, was shown to be an autoregulator of the MvaL1 operon. As in E. coli, regulation takes place at the level of translation. The target site for repression by MvaL1 was localized by site-directed mutagenesis to a region within the coding sequence of the MvaL1 gene commencing about 30 bases downstream of the ATG initiation codon. The MvaL1 binding site on the mRNA exhibits similarity in both primary sequence and secondary structure to the L1 regulatory target site of E. coli and to the putative binding site for MvaL1 on the 23S rRNA. In contrast to other regulatory systems, the putative MvaL1 binding site is located in a sequence of the mRNA which is not in direct contact with the ribosome as part of the initiation complex. Furthermore, the untranslated leader sequence is not involved in the regulation. Therefore, we suggest that a novel mechanism of translational feedback regulation exists in M. vannielii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号