首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mucins are large glycoproteins characterized by mucin domains that show little sequence conservation and are rich in the amino acids Ser, Thr, and Pro. To effectively predict mucins from genomic and protein sequences obtained from genome projects, we developed a strategy based on the amino acid compositional bias characteristic of the mucin domains. This strategy is combined with an analysis of other features commonly found in mucins. Our method has now been used to predict mucins in the puffer fish Fugu rubripes that were previously not identified or annotated. At least three gel-forming mucins were found with the same general domain structure as the human MUC2 mucin. In addition one transmembrane mucin was identified with SEA and EGF domains as found in the mammalian transmembrane mucins. These results suggest that the number of gel-forming mucins has been conserved during evolution of the vertebrates, whereas the family of transmembrane mucins has been markedly expanded in the higher vertebrates.  相似文献   

2.
The biochemical and histochemical properties of intestinal mucin glycoproteins of virus and parasite-free common carp Cyprinus carpio were investigated. The presence of carbohydrates in mucin glycoproteins could be demonstrated by histochemical methods, but generally, no obvious differences in specific staining for mucin glycoproteins were observed in contrast to biochemical techniques. Biochemical staining methods displayed differences in structure and composition of intestinal glycoproteins. Released intestinal glycoproteins contained two types of mucin glycoproteins: type 1 mucins displayed a size of >2000 kDa, and were highly glycosylated, while type 2 mucins ranged between 700 and 70 kDa, and were weakly glycosylated. In epithelial (intracellular) glycoproteins, mainly N-acetyl-α-galactosamine and mannose were found, while in luminal (extracellular) glycoproteins in addition sialic acid was evident. Fucose was not detected. Thus, structure and composition of intestinal glycoproteins of common carp were similar to those found in mammals.  相似文献   

3.
Mucins are synthesized and secreted by many epithelia. They are complex glycoproteins that offer cytoprotection. In their functional configuration, mucins form oligomers by a biosynthetic process that is poorly understood. A family of four human gastrointestinal mucin genes (MUC2, MUC5AC, MUC5B, and MUC6) is clustered to chromosome 11p15.5. To study oligomerization of these related mucins, we performed metabolic labeling experiments with [35S]amino acids in LS174T cells, and isolated mucin precursors by specific immunoprecipitations that were analyzed on SDS-PAGE. Each of the precursors of MUC2, MUC5AC, MUC5B, and MUC6 formed a single species of disulfide-linked homo-oligomer within 1 h after pulse labeling. Based on apparent molecular masses, these oligomeric precursors were most likely dimers. Inhibition of vesicular RER-to-Golgi transport, with brefeldin A and CCCP, did not affect the dimerization of MUC2 precursors, localizing dimerization to the RER. O-Glycosylation of MUC2 followed dimerization. Inhibition of N- glycosylation by tunicamycin retarded, but did not inhibit, dimerization, indicating that N-glycans play a role in efficient dimerization of MUC2 precursors. Based on sequence homology, the ability of MUC2, MUC5AC, MUC5B and MUC6 to dimerize most likely resides in their C-terminal domains. Thus, the RER-localized dimerization of secretory mucins likely proceeds by similar mechanisms, which is an essential step in the formation of the human gastrointestinal mucus- gels.   相似文献   

4.
Mucins and glycoproteins with mucin-like regions contain densely O-glycosylated domains often found in tandem repeat (TR) sequences. These O-glycodomains have traditionally been difficult to characterize because of their resistance to proteolytic digestion, and knowledge of the precise positions of O-glycans is particularly limited for these regions. Here, we took advantage of a recently developed glycoengineered cell-based platform for the display and production of mucin TR reporters with custom-designed O-glycosylation to characterize O-glycodomains derived from mucins and mucin-like glycoproteins. We combined intact mass and bottom–up site-specific analysis for mapping O-glycosites in the mucins, MUC2, MUC20, MUC21, protein P-selectin-glycoprotein ligand 1, and proteoglycan syndecan-3. We found that all the potential Ser/Thr positions in these O-glycodomains were O-glycosylated when expressed in human embryonic kidney 293 SimpleCells (Tn-glycoform). Interestingly, we found that all potential Ser/Thr O-glycosites in TRs derived from secreted mucins and most glycosites from transmembrane mucins were almost fully occupied, whereas TRs from a subset of transmembrane mucins were less efficiently processed. We further used the mucin TR reporters to characterize cleavage sites of glycoproteases StcE (secreted protease of C1 esterase inhibitor from EHEC) and BT4244, revealing more restricted substrate specificities than previously reported. Finally, we conducted a bottom–up analysis of isolated ovine submaxillary mucin, which supported our findings that mucin TRs in general are efficiently O-glycosylated at all potential glycosites. This study provides insight into O-glycosylation of mucins and mucin-like domains, and the strategies developed open the field for wider analysis of native mucins.  相似文献   

5.
Complex structure of human bronchial mucus glycoprotein   总被引:8,自引:0,他引:8  
Human bronchial mucus glycoproteins or mucins were isolated from the sputum of two patients by a method avoiding reducing agents and involving water extraction and gel filtration on Sepharose CL-2B in 6 M guanidinium chloride. The chemical analysis indicated approximately 25-40% lipid. The amino acid and carbohydrate analysis differ quantitatively from that of mucins purified after prior reduction of mucus. These fractions also have a higher proportion of aspartic and glutamic acids than that of the mucins from reduced sputum. These mucins are still contaminated by small amounts of peptides but do not seem to contain disulfide-attached cross-linking protein. Human bronchial mucins have a strong tendency to form aggregates except in 6 M guanidinium chloride. Electron microscopy performed with various procedures indicates the presence of both micelles and flexible threads measuring 200-1000 nm. Delipidation removes most of the micellar forms. Thereafter mucins appear mainly as polydisperse flexible extended threads and also as aggregates. These features of bronchial mucins do not fit with the generally accepted idea of mucin subunits linked by disulfide bridges (unless they are linked end to end) and alternatively favour a model where mucin molecules behave like filaments that could easily aggregate according to the solvent system (mucin concentration, absence of dissociating conditions).  相似文献   

6.
MUC5AC mucins secreted by HT-29 cells in culture are oligomeric glycoproteins with characteristics similar to the MUC5AC mucins isolated from human airway sputum (Sheehan, J. K., Brazeau, C., Kutay, S., Pigeon, H., Kirkham, S., Howard, M., and Thornton, D. J. (2000) Biochem. J. 347, 37-44). Therefore we have used this cell line as a model system to investigate the biosynthesis of this major airway mucin. Initial experiments showed that the MUC5AC mucins isolated from the cells were liable to depolymerization depending on the conditions used for their solubilization. Prevention against reduction resulted in large oligomers associated with the cells, similar to those secreted into the medium. Using a combination of density gradient centrifugation and agarose gel electrophoresis coupled with probes specific for different forms of the mucin we identified five major intracellular populations of the MUC5AC polypeptide (unglycosylated monomer and dimer, GalNAc-substituted dimer, fully glycosylated dimer, and higher order oligomers). Pulse-chase studies were performed to follow the flow of radioactivity through these various intracellular forms into the mature oligomeric mucin secreted into the medium (a process taking approximately 2-4 h). The results show that the mucin polypeptide undergoes dimerization and then becomes substituted with GalNAc residues prior to glycan elaboration to produce a mature mucin dimer, which then undergoes multimerization. These data indicate that this oligomeric mucin follows a similar assembly to the von Willebrand factor glycoprotein to yield long linear disulfide-linked chains.  相似文献   

7.
In vivo glycosylation of mucin tandem repeats.   总被引:4,自引:0,他引:4  
The biochemical and biophysical properties of mucins are largely determined by extensive O-glycosylation of serine- and threonine-rich tandem repeat (TR) domains. In a number of human diseases aberrant O-glycosylation is associated with variations in the properties of the cell surface-associated and secreted mucins. To evaluate in vivo the O-glycosylation of mucin TR domains, we generated recombinant chimeric mucins with TR sequences from MUC2, MUC4, MUC5AC, or MUC5B, which were substituted for the native TRs of epitope-tagged MUC1 protein (MUC1F). These hybrid mucins were extensively O-glycosylated and showed the expected association with the cell surface and release into culture media. The presence of different TR domains within the chimeric mucins appears to have limited influence on their posttranslational processing. Alterations in glycosylation were detailed by fast atom bombardment mass spectrometry and reactivity with antibodies against particular blood-group and tumor-associated carbohydrate antigens. Future applications of these chimeras will include investigations of mucin posttranslational modification in the context of disease.  相似文献   

8.
Mucins are high molecular weight glycoproteins produced by goblet cells and secreted on mucosal surfaces. We investigated biochemical and histochemical properties of intestinal mucins of virus- and parasite-free common carp Cyprinus carpio in response to a single peroral application of endotoxin (lipopolysaccharide = LPS). Intracellular mucins were quantified histochemically by their carbohydrate content and characterized by specific, lectin-based methods. In addition, secreted epithelial (intracellular) and luminal (extracellular) mucins were isolated and separated by downward gel filtration. Carbohydrate and protein content were determined photometrically. Subsequently, terminal glycosylation was characterized by a lectin-binding assay. A peroral endotoxin application altered intestinal secretion and composition of intestinal mucin glycoproteins in common carp. A statistically significant decrease in mature luminal mucins was demonstrated, linked to a new biosynthesis of intracellular mucin glycoproteins. Simultaneous changes in the glycosylation pattern of isolated mucins were found. The intestinal mucosal system is purported to provide a removal mechanism for bacterial noxes by increasing secretion of mucins inducing a flushing-out effect, in combination with altered glycosylation patterns that change adhesion properties. Consequently, pseudofaeces of fish, which are a common sign of intestinal parasitical infections, may also be interpreted as an elimination mechanism for strong bacterial noxes.  相似文献   

9.
Infective larvae of the parasitic nematode Toxocara canis secrete a family of mucin-like glycoproteins, which are implicated in parasite immune evasion. Analysis of T. canis expressed sequence tags identified a family of four mRNAs encoding distinct apomucins (Tc-muc-1-4), one of which had been previously identified in the TES-120 family of glycoproteins secreted by this parasite. The protein products of all four cDNAs contain signal peptides, a repetitive serine/threonine-rich tract, and varying numbers of 36-amino acid six-cysteine (SXC) domains. SXC domains are found in many nematode proteins and show similarity to cnidarian (sea anemone) toxins. Antibodies to the SXC domains of Tc-MUC-1 and Tc-MUC-3 recognize differently migrating members of TES-120. TES-120 proteins separated by chromatographic methods showed distinct amino acid composition, mass, and sequence information by both Edman degradation and matrix-assisted laser desorption ionization/time of flight mass spectrometry on peptide fragments. Tc-MUC-1, -2, and -3 were shown to be secreted mucins with real masses of 39.7, 47.8, and 45.0 kDa in contrast to their predicted peptide masses of 15.7, 16.2, and 26.0 kDa, respectively. The presence of SXC domains in all mucin products supports the suggestion that the SXC motif is required for mucin assembly or export. Homology modeling indicates that the six-cysteine domains of the T. canis mucins adopt a similar fold to the sea anemone potassium channel-blocking toxin BgK, forming three disulfide bonds within each subunit.  相似文献   

10.
Contrary to first appearances, mucus structural biology is not an oxymoron. Though mucus hydrogels derive their characteristics largely from intrinsically disordered, heavily glycosylated polypeptide segments, the secreted mucin glycoproteins that constitute mucus undergo an orderly assembly process controlled by folded domains at their termini. Recent structural studies revealed how mucin complexes promote disulphide-mediated polymerization to produce the mucus gel scaffold. Additional protein–protein and protein-glycan interactions likely tune the mesoscale properties, stability, and activities of mucins. Evidence is emerging that even intrinsically disordered glycosylated segments have specific structural roles in the production and properties of mucus. Though soft-matter biophysical approaches to understanding mucus remain highly relevant, high-resolution structural studies of mucins and other mucus components are providing new perspectives on these vital, protective hydrogels.  相似文献   

11.
Cell surface mucin-type glycoproteins and mucin-like domains.   总被引:9,自引:2,他引:7  
Cell surface mucins and mucin-like domains comprise a diverse and heterogeneous group of cell surface glycoproteins. The heterogeneity results from both genetic variations in the polypeptides and carbohydrate differences. Mucins form extended rods from the cell surface. The mucin domains apparently serve a protective function, protecting the glycoproteins from cell surface proteolysis and protecting the cells from attack by other cells. Biosynthesis of mucin oligosaccharides is initiated near the transit of the proteins from the endoplasmic reticulum to the Golgi and proceeds rapidly during passage to the cell surface. In some carcinomas a second O-glycosylation pathway adds new oligosaccharides to the glycoproteins after they have reached the cell surface, presumably during recycling.  相似文献   

12.
K V Chace  M Flux  G P Sachdev 《Biochemistry》1985,24(25):7334-7341
The major nonreduced mucus glycoproteins (mucins) from sputa of cystic fibrosis (CF) and asthmatic patients have been purified to electrophoretic homogeneity and subjected to physical and chemical characterization. The sputum specimens were solubilized in buffer containing 0.22 M KSCN and fractionated on Bio-Gel A-5m, followed by digestion with DNase, rechromatography on the same column, and chromatography on hydroxylapatite. Sodium dodecyl sulfate gel electrophoresis of purified mucins gave a single band. Carbohydrate analyses of the purified mucins showed no significant differences in the sugar components from the two mucins. However, the CF mucin contained substantially higher (11%) sulfate content than that observed for the asthmatic mucin (5.9%). Amino acid analyses indicated that the CF mucin had higher levels of serine plus threonine (35%) as compared to the asthmatic mucin (29%). In contrast, CF mucin contained a lower content of aspartate, glutamate, and glycine than that observed for the asthmatic mucin. Molecular weights of 3.8 X 10(6) and 3.5 X 10(6) were obtained for CF and asthmatic mucins, respectively, from light-scattering studies of mucins in the presence of 6 M guanidine hydrochloride. Reduction of the disulfide bonds of the two mucins did not alter their molecular weights. Liquid chromatographic studies on Sepharose CL2B showed that CF mucin forms aggregates sufficiently large to be excluded from the gel. As compared to the CF mucin, the asthmatic mucin formed fewer of these large aggregates under identical experimental conditions. Reduction and alkylation of the mucins resulted in their inability to form aggregates. The higher state of aggregation of CF mucin may influence the viscoelastic properties of the CF lung's mucus secretions.  相似文献   

13.
Summary The oligosaccharide chains in human and swine trachea and Cowper's gland mucin glycoproteins were completely removed in order to examine the subunit structure and properties of the polypeptide chains of these glycoproteins. The carbohydrate, which constitutes more than 70% of these glycoproteins, was removed by two treatments with trifluoromethanesulfonic acid for 3 h at 3° and periodate oxidation by a modified Smith degradation. All of the sialic acid, fucose, galactose, N-acetylglucosamine and N-acetylgalactosamine present in these glycoproteins was removed by these procedures.The deglycosylated polypeptide chains were purified and characterized. The size of the monomeric forms of all three polypeptide chains were very similar. Data obtained by gel filtration, release of amino acids during hydrolysis with carboxypeptidase B and gel electrophoresis in the presence of 0.1% dodecyl sulfate showed that a major fraction from each of the three mucin glycoproteins had a molecular size of about 67 kDa. All of the deglycosylated chains had a tendency to aggregate. Digestion with carboxypeptidases showed that human and swine trachea mucin glycoproteins had identical carboxyl terminal sequences, -Val-Ala-Phe-Tyr-Leu-Lys-Arg-COOH. Cowper's gland mucin glycoprotein had a similar carboxyl terminal sequence, -Val-Ala-Tyr-Leu-Phe-Arg-Arg-COOH. The yield of amino acids after long periods of hydrolysis with carboxypeptidases showed that at least 85% of the polypeptide chains in each of the deglycosylated preparations have these sequences. These results suggested that the polypeptide chains in these deglycosylated mucin glycoprotein preparations were relatively homogeneous.The deglycosylated polypeptide chains as well as the intact mucin glycoproteins had blocked amino terminii. The purified polypeptide chains were digested with trypsin-TCPK, and S. aureus V8 protease and the resulting peptides were isolated by gel electrophoresis in the presence of 0.1% dodecyl sulfate and by HPLC. Two partial amino acid sequences from swine trachea mucin glycoprotein, two partial sequences from human trachea mucin glycoprotein and three partial sequences from Cowper's gland mucin glycoprotein were determined. The partial amino acid sequences of the peptides isolated from swine trachea mucin glycoprotein showed more than 70% sequence homology to a repeating sequence present in porcine submaxillary mucin glycoprotein. Five to eight immunoprecipitable bands with sizes ranging from about 40 kDa to 46 kDa were seen when the polypeptide chains were digested with S. aureus V8 protease. All of the bands had blocked amino terminii and differed by a constant molecular weight of about 1.5 kDa. These data suggest that the polypeptides were formed by cleavage of glutamic acid residues present at regular intervals in the chains of all three mucin glycoproteins. These large immunoreactive peptides were formed by the removal of smaller peptides from the carboxyl terminal end of the deglycosylated mucin glycoprotein chains. Taken collectively, these findings indicate that the polypeptide chains in these mucin glycoproteins are very similar in subunit structure and that there is a high degree of homology between their polypeptide chains.  相似文献   

14.
A new approach for removing O-glycosidically linked carbohydrate side chains from glycoproteins is described. Periodate oxidation of the C3 and C4 carbons in peptide-linked N-acetylgalactosamine (GalNAc) residues generates a dialdehyde product which, under mild alkaline conditions, undergoes a beta-elimination which releases carbohydrate and leaves an intact peptide core. The pH and time dependence, and intermediates of the elimination, have been extensively followed by carbon-13 NMR spectroscopy and amino acid analysis using ovine submaxillary mucin (OSM) as the substrate. The deglycosylation of OSM is complete and provides apomucin in high yield with an amino acid composition identical to the starting material. Carboxymethylated OSM when deglycosylated by this method gives an apomucin with an apparent molecular weight of ca. 700 x 10(3). The molecular weight is the same as that calculated for the peptide core of the starting mucin, demonstrating the absence of peptide core cleavage. This contrasts with the use of trifluoromethanesulfonic acid (TFMSA), which generates apomucin products of lower molecular weights. Oligosaccharide side chains substituted at C3 of the peptide-linked GalNAc residue are resistant to the oxidation and elimination. Glycoproteins containing these more complex side chains can be deglycosylated by pretreatment with TFMSA under mild (0 degree C) conditions, which removes peripheral sugars (while leaving the peptide-linked GalNAc residue intact), followed by oxidation and beta-elimination. Studies on the deglycosylation of porcine submaxillary mucin and human tracheobronchial mucin indicate that this approach provides more efficient removal of carbohydrate and less peptide core degradation than a more vigorous (25 degrees C) treatment with TFMSA alone. 13C NMR spectroscopic studies and carbohydrate analysis of the deglycosylation intermediates of the human mucin indicate that certain sialic acid containing and N-acetylglucosamine-containing oligosaccharides have elevated resistance to TFMSA treatment at 0 degrees C. By the use of neuraminidase, repeated mild TFMSA treatments, and multiple oxidations and beta-eliminations, the human mucin can be nearly completely deglycosylated. It is expected that all mucins and most glycoproteins containing O-glycosidic linkages can be readily and nearly completely deglycosylated using this combined approach.  相似文献   

15.
The MUC family: an obituary   总被引:23,自引:0,他引:23  
Mucins are glycoproteins that are common on the surfaces of many epithelial cells; they are deemed to mediate many interactions between these cells and their milieu. Several of these mucins form the mucus layer that is found in many hollow organs. The biophysical properties of mucins are related to their extensive O-linked glycosylation rather than directly to their polypeptide sequences. Despite the frequent absence of sequence homology, many human genes encoding mucins have been named MUC followed by a number, unjustly suggesting the existence of one large gene family. In this article, it is suggested that the mucin genes be renamed according to their sequence homologies.  相似文献   

16.
From the mouse sublingual and submandibular glands high-molecular weight glycoproteins (mucins) were isolated. These mucins appeared to be homogeneous in polyacrylamide gel electrophoresis and in the analytical ultracentrifuge. S20,W values of 10.9 and 5.5 were found for the sublingual and submandibular mucin respectively. With sodium dodecyl sulfate or N-acetylcysteine no subunits could be detected. Both mucins consisted for about 1/3 of protein and 2/3 carbohydrate. Their mucin character was also denoted by the high content of serine plus threonine. Respectively 42 mol% and 34 mol% of the protein core of the sublingual and submandibular mucins consisted of these amino acids. The main sugars in these mucins were sialic acid, galactosamine, galactose, glucosamine and mannose. The molar ratio for the sublingual and submandibular mucin being 1.00 : 1.03 : 1.08 : 0.26 : 0.23 and 1.00 : 0.71 : 1.10 : 0.65 : 0.53, respectively. The sialic acid content of both mucins was about 25%. Fucose and sulfate, on the other hand, were less than 1%. The presence of sulfate was also indicated by preliminary studies in vivo on the incorporation of [35SO4] sulfate.  相似文献   

17.
The O-glycans that decorate mucin glycoproteins contribute to the biophysical and biochemical properties of these molecules and hence their function as a barrier and lubricant on epithelial surfaces. Alterations in mucin O-glycosylation in certain diseases may contribute to pathology. It is known that both the host cell type and the amino acid sequence of the mucin tandem repeat contribute to the O-glycosylation of a mucin molecule. We expressed an epitope-tagged MUC1 mucin cDNA construct in the airway cell line 16HBE14o- and the colon carcinoma cell line Caco2 and used Fast Atom Bombardment Mass Spectrometry to evaluate the contribution of the host cell to differences in O-glycosylation of a single mucin. Many of the glycans detected on the MUC1 mucin were common to both cell types, as would be predicted from biosynthetic constraints. However, MUC1 synthesized in the airway cell line showed comparatively low levels of sialylation but carried a range of oligo-N-acetyllactosamine structures that were not seen in the colon carcinoma cell line.  相似文献   

18.
《Journal of molecular biology》2019,431(19):3740-3752
The mucin 2 glycoprotein assembles into a complex hydrogel that protects intestinal epithelia and houses the gut microbiome. A major step in mucin 2 assembly is further multimerization of preformed mucin dimers, thought to produce a honeycomb-like arrangement upon hydrogel expansion. Important open questions are how multiple mucin 2 dimers become covalently linked to one another and how mucin 2 multimerization compares with analogous processes in related polymers such as respiratory tract mucins and the hemostasis protein von Willebrand factor. Here we report the x-ray crystal structure of the mucin 2 multimerization module, found to form a dimer linked by two intersubunit disulfide bonds. The dimer structure calls into question the current model for intestinal mucin assembly, which proposes disulfide-mediated trimerization of the same module. Key residues making interactions across the dimer interface are highly conserved in intestinal mucin orthologs, supporting the physiological relevance of the observed quaternary structure. With knowledge of the interface residues, it can be demonstrated that many of these amino acids are also present in other mucins and in von Willebrand factor, further indicating that the stable dimer arrangement reported herein is likely to be shared across this functionally broad protein family. The mucin 2 module structure thus reveals the manner by which both mucins and von Willebrand factor polymerize, drawing deep structural parallels between macromolecular assemblies critical to mucosal epithelia and the vasculature.  相似文献   

19.
R Gupta  N Jentoft 《Biochemistry》1989,28(14):6114-6121
The structure of a high molecular weight fraction of porcine submaxillary mucin was studied by using degradative techniques. Reduction of disulfide linkages released mucin subunits together with an associated protein(s) of approximately 140 kDa. The molecular weights of the subunits ranged from approximately 0.5 x 10(6) to 2.5 x 10(6). Trypsinization of subunits generated glycosylated domains and small, poorly glycosylated or nonglycosylated tryptic peptides. The glycosylated domains, which have an average molecular weight of approximately 270K, possess an unusual amino acid composition containing only nine different amino acids. The minor amino acids which are absent from the glycosylated domains but which are consistently present in both the mucin and the mucin subunits were recovered in the tryptic peptides. Pronase digestion of the glycosylated domains generated smaller fragments of approximately 17 kDa. Comparing these results to the partial cDNA sequence for porcine submaxillary mucin reported by Timpte et al. [(1988) J. Biol. Chem. 263, 1081-1088] suggests that the glycosylated domains consist of variable numbers of the 81 amino acid tandem repeat observed in the cDNA sequence. Further, the fact that porcine submaxillary mucin contains subunits, link proteins, and glycosylated domains suggests that its structure is similar to that described for cervical and intestinal mucins. Intact mucin, mucin "subunits", and the glycosylated domains are all polydisperse with respect to molecular weight, indicating that mucin polydispersity is due to variability in the number of units linked together as well as to variability in the size of the units.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号