首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y Oomori  H Iuchi  K Ishikawa  Y Satoh  K Ono 《Acta anatomica》1992,145(2):127-131
The present immunocytochemical study revealed gamma-aminobutyric acid (GABA) immunoreactivity in the oxyntic and pyloric mucosa of the rat stomach at light- and electron-microscopic levels. GABA-immunoreactive endocrine cells were numerously seen in the lower half portion of the pyloric mucosa but rarely in the oxyntic mucosa. These cells were round or oval in shape and sometimes had a short cytoplasmic process. Serotonin-immunoreactive enterochromaffin (EC) cells were also observed in the oxyntic and pyloric mucosa of the stomach. The distribution and shapes of the immunoreactive cells were similar to those of the GABA-immunoreactive cells. With a double immunolabeling technique using anti-GABA and antiserotonin serum, GABA-immunoreactive endocrine cells showed serotonin immunoreactivity and were identified as EC cells. At the electron-microscopic level the GABA-immunoreactive cells contained round or oval, spindle-like, pear-shaped granules in EC cells. The immunoreaction product in the EC cells was generally confined to the granular cores. These findings suggest that GABA may be synthesized in the EC cells and be released from the granules of the cells after adequate stimuli.  相似文献   

2.
Summary In the oxyntic gland area of the rat stomach the histamine-containing epithelial cells (also referred to as enterochromaffin-like cells because of their morphologic similarity with the 5-hydroxytryptamine-storing enterochromaffin cells) constitute the system of argyrophil cells in this area as previously shown by the combined use of fluorescence and light microscopic techniques. By performing the argyrophil staining reaction directly on ultra-thin sections it could be demonstrated in the electron microscope that the argyrophil cells have features suggesting that they are endocrine. Based on the ultrastructure of their secretory granules at least two such endocrine cell systems—both argyrophil—could be recognized in the oxyntic glands. The silver deposits were accumulated over the secretory granules of both these cell systems.It is well known that after injection of 1-3,4-dihydroxyphenylalanine, the histamine-storing (enterochromaffin-like) cells of the oxyntic glands store also dopamine. Under these conditions the enterochromaffin-like cells stain argentaffin, which has been shown at the light microscopic level. Also this reaction could be performed directly on ultra-thin sections. By electron microscopy it was then established that the two endocrine cell systems of the oxyntic gland area stained argentaffin upon treatment with 1-3,4-dihydroxyphenylalanine, and that the staining was confined to the secretory granules.The results clearly show that the enterochromaffin-like cells of the rat oxyntic gland area (which is devoid of 5-hydroxytryptamine-containing enterochromaffin cells) are identical with cells characterized as endocrine by ultrastructural criteria, and that gastric non-mast-cell histamine occurs in at least two separate systems of enterochromaffin-like cells.  相似文献   

3.
Summary The epithelium of the fundic region mucosa of the hind stomach in the Llama guanacoe has been studied using morphological and histochemical methods. Morphology suggests that solute and water absorption may occur in the epithelium of the surface and of the foveolae, although this absorption can not be estimated because of the extensive secretion of the gastric glands. The same cells of the surface and foveolar epithelium show numerous secretory granules. The glands reveal neck cells, chief cells, a large number of oxyntic cells, four types of endocrine cells (A-like, ECL, D and EC), brush cells and wandering cells. PAS and Alcian blue reactions for light microscopy suggest a secretion of neutral and acidic mucosubstances in the surface and foveolar epithelium, of neutral mucosubstances only in the neck cells. Periodic acid-thiocarbohydrazide silver proteinate (PA-TCH-SP) reaction for electron microscopy confirms the presence of neutral mucosubstances within the secretory granules of the surface, foveolar and neck epithelial cells. In all these cells, the reaction product is also evident within sacculi and vesicles of the maturing surface of the Golgi apparatus. A positive PA-TCH-SP reaction also occurs on the membrane (and not on the contents) of the Golgi apparatus (maturing surface) and of the secretory granules of the chief cells as well as on the membrane of the Golgi apparatus and of apical vesicles and tubules of the oxyntic cells. In addition, silver granules slightly enhance the electron density of the contents of the secretory granules in the endocrine cells. Morphological and histochemical findings are discussed and compared with results described by others for monogastric mammals.  相似文献   

4.
5.
The endocrine cells of the gastric mucosa of Rana temporaria have been studied according to the ultrastructure, the staining properties of the granules with Masson Fontana's and Grimelius' silver methods, silver impregnation of Davenport on deplasticised semithin sections and immunocytochemical techniques. Seven different types of endocrine cells have been described. Six were regarded as belonging to known types: G, A, EC, ECL, D and P cells. One type was considered as unclassifiable.  相似文献   

6.
Summary Chromogranins A and B are glycoproteins originally detected in the adrenal medulla. These proteins are also present in a variety of neuroendocrine cells. The subcellular distribution of the chromogranins, and particularly their intra-granular topology are of special interest with respect to their putative functions.Endocrine cells of the guinea pig adrenal medulla, pancreas and gastric mucosa were investigated immunoelectron microscopically for the subcellular distribution of both chromogranins. Out of 13 established endocrine cell types in all locations, only two endocrine cell types showed immunoreactivity for both chromogranin A and B, and eight endocrine cell types showed immunoreactivities only for chromogranin A. These immunoreactivities varied inter-cellularly. Three endocrine cell types were unreactive for the chromogranins. Moreover, some hormonally non-identified endocrine cells in the pancreas and the gastric mucosa also contained chromogranin A immunoreactivities.Subcellularly, chromogranin A or B were confined to secretory granules. In most endocrine cells, the secretory granules showed chromogranin immunoreactivities of varying densities. Furthermore, the intra-granular topology of chromogranin A or B in the secretory granules varied considerably: in some endocrine cell types, i.e. chromaffin-, gastrin- and enterochromaffin-like-cells, chromogranin A immunoreactivity was localized in the perigranular and/or dense core region of the secretory granules; in others, i.e. insulin-, pancreatic polypeptide-and bovine adrenal medulla dodecapeptide-cells, it was present preferentially in the electron-opaque centre of the secretory granules; chromogranin B immunoreactivity was localized preferentially in the perigranular region of the secretory granules of chromaffin cells and gastrin-cells. The inter-cellular and inter-granular variations of chromogranin A and B immunoreactivities point to differences in biosynthesis or processing of the chromogranins among endocrine cells and their secretory granules.  相似文献   

7.
Y Cetin  D Grube 《Histochemistry》1991,96(4):301-310
Chromogranins A and B are glycoproteins originally detected in the adrenal medulla. These proteins are also present in a variety of neuroendocrine cells. The subcellular distribution of the chromogranins, and particularly their intra-granular topology are of special interest with respect to their putative functions. Endocrine cells of the guinea pig adrenal medulla, pancreas and gastric mucosa were investigated immunoelectron microscopically for the subcellular distribution of both chromogranins. Out of 13 established endocrine cell types in all locations, only two endocrine cell types showed immunoreactivity for both chromogranin A and B, and eight endocrine cell types showed immunoreactivities only for chromogranin A. These immunoreactivities varied inter-cellularly. Three endocrine cell types were unreactive for the chromogranins. Moreover, some hormonally non-identified endocrine cells in the pancreas and the gastric mucosa also contained chromogranin A immunoreactivities. Subcellularly, chromogranin A or B were confined to secretory granules. In most endocrine cells, the secretory granules showed chromogranin immunoreactivities of varying densities. Furthermore, the intra-granular topology of chromogranin A or B in the secretory granules varied considerably: in some endocrine cell types, i.e. chromaffin-, gastrin- and enterochromaffin-like-cells, chromogranin A immunoreactivity was localized in the perigranular and/or dense core region of the secretory granules; in others, i.e. insulin-, pancreatic polypeptide- and bovine adrenal medulla dodecapeptide-cells, it was present preferentially in the electron-opaque centre of the secretory granules; chromogranin B immunoreactivity was localized preferentially in the perigranular region of the secretory granules of chromaffin cells and gastrin-cells. The inter-cellular and inter-granular variations of chromogranin A and B immunoreactivities point to differences in biosynthesis or processing of the chromogranins among endocrine cells and their secretory granules.  相似文献   

8.
Summary An ultrastructural morphometric study of the endocrine cells of the oxyntic mucosa of the stomach in gastric biopsies collected from five male and five female healthy volunteers aged 19–31 was performed. No sex-related differences were disclosed. Endocrine cells accounted for 1.2±0.4% of the epithelial volume and 0.9±0.4% of the mucosal volume, i.e., including the lamina propria. After classification of the specific endocrine cell types according to the ultrastructural morphology of secretory granules, the volume densities of ECL, P and D cells (30±9%, 24±7%, and 22±4% of the entire endocrine cell mass, respectively) were higher than those of other endocrine cell types. In particular, EC cells contributed less than 10% and X cells represented a very low proportion of the total cells. Non-granulated profiles of cells which in all other respects appeared to be endocrine were also found with a volume density of 8±4%. D cells were distinguished by the high fraction of cytoplasm occupied by secretory granules (31±5%). Subdivision of the whole mucosa into four horizontal segments revealed the endocrine cells to be mostly distributed in the three lower, with virtually no endocrine cells in the superficial segment. The quantitative ultrastructural analysis of the endocrine cell population of the normal human oxyntic mucosa provided by this study may allow a better evaluation of physiological and pharmacological variations of the endocrine cell population.  相似文献   

9.
The oxyntic mucosa of the mammalian stomach is rich in endocrine cells, such as ECL cells, A-like cells, somatostatin cells, D1/P cells and, in some species, enterochromaffin cells. The various endocrine cell types can be distinguished on the basis of their characteristic cytoplasmic granules and vesicles. The ECL cells contain numerous large secretory vesicles and relatively few, small electron-dense granules and small clear microvesicles. We have suggested that in the rat the ECL cells contain most of the gastric histamine with the secretory vesicles as the major histamine storage site in these cells. α-Fluoromethylhistidine is an irreversible inhibitor of histidine decarboxylase, the histamine-forming enzyme. We have previously shown that this enzyme inhibitor depletes histamine from the ECL cells in the rat and reduces the number of secretory vesicles in the cytoplasm. In the present study, we have examined whether α-fluoromethylhistidine affects the ECL cells in other species and whether it affects other types of endocrine cells in the oxyntic mucosa of the rat. Mice, rats and hamsters were treated with the inhibitor (3 mg/kg per h) via minipumps subcutaneously for 24 h. This treatment lowered the oxyntic mucosal histamine concentration by 65–90% and the number and volume density of the secretory vesicles by 85–95% in the ECL cells of the three species examined. In contrast, the number and volume density of granules and microvesicles were not greatly affected. No evidence was found for an effect of α-fluoromethylhistidine on A-like cells, somatostatin cells or D1/P cells of the rat stomach, suggesting that, unlike the ECL cells, they do not contain histamine. Received: 18 January 1996 / Accepted: 23 May 1996  相似文献   

10.
Summary An ultrastructural study of enterochromaffin-like (ECL) cells in the gastric mucosa of the white-belly opossum Didelphis albiventris (Marsupialia) was carried out. In parallel, histochemical methods were used at the light-microscopical level to demonstrate argentaffin cells, argyrophilic cells, and serotonin- and histamine-immunoreactive elements. Argentaffin and serotonin-immunoreactive cells were scattered, and argyrophilic cells were numerous, within the full thickness of the mucosa. Argyrophilic cell distribution was similar to that of histamine-immunoreactive elements. At the electron-microscopical level, the oxyntic mucosa of D. albiventris presented endocrine cells with secretory granules morphologically similar to those of the ECL cell of eutherian mammals. However, in this marsupial, the ECL cell exhibited a variable mixture of two distinct types of secretory granules: (1) granules with the morphological appearance of the eutherian ECL cell, and (2) granules morphologically similar to those of the eutherian enterochromaffin (EC) cells. Based on this morphological pattern of the ECL cell granules, it is proposed that in the oxyntic mucosa of the opossum D. albiventris, the EC and ECL cells represent distinct steps in the same line of cell differentiation; the ECL cell should also be a site of histamine storage.  相似文献   

11.
Summary The oxyntic mucosa of the dog stomach is rich in cells storing pancreatic-type glucagon. The cells were identified by immunocytochemistry and found to be indistinguishable from pancreatic A cells in the electron microscope. Ultrastructural identification of the immunoreactive cells was accomplished by the use of consecutive semithin-ultrathin sections, a technique that permitted the use of optimally fixed material.  相似文献   

12.
Summary The ultrastructure of endocrine-like cells of the human lung was compared to the ultrastructure of endocrine-like cells of the stomach and pancreas in both adult and foetal material.Three types of endocrine-like cells were found in the human foetal lung. Type 1 or P1 cells contained very small granules (about 110 nm) of two varieties, cored and vesicular; type 2 or P2 cells with cored granules measuring about 130 nm; and type 3 cells with cored granules of about 180–190 nm. In the adult lung only one type Pa cells with cored granules could be found.Cells resembling foetal P1 cells were not found in foetal or adult gastric mucosa, or in the pancreas. In the gastric mucosa cells resembling pulmonary Pa or P2 cells were moderately represented and often difficult to distinguish from each other. Thus, they were grouped together as gastric P cells. Cells with granules resembling those of pulmonary type 3 cells were found most numerous in the adult oxyntic mucosa. Cells resembling gastric P cells (and pulmonary P2 cells) were rather numerous in foetal pancreas, but very rare in adult pancreas. Few cells containing granules somewhat resembling those of pulmonary type 3 cells were present in both foetal and adult pancreas.The results were discussed in respect to 1) the similarities between some gastric or pancreatic carcinoids and lung carcinoids, 2) the gastro-pancreatic P cells as a separate cell population, 3) the possible secretion by the lung endocrine-like cells of active substances, either amines or peptides, 4) the similarity between the secretory granules of Pa and P1 cells and neurosecretory granules of the hypothalamus and between P2 cells and some endocrine cells of the pituitary.Supported in part by the Italian National Research Council (Grants N. 75.00630.04 and N. 76.01558.04)  相似文献   

13.
Summary In the gastric mucosa of two teleost species, the perch (Perca fluviatilis) and the catfish (Ameiurus nebulosus) three endocrine cell types were found, located predominantly between the mucoid cells of the gastric mucosa. A fourth cell type is present in the gastric glands of catfish. Each cell type was defined by its characteristic secretory granules. Type-I cells were predominant in both fish. These cells contained round or oval granules with a pleomorphic core. The average diameter of granules was 400 nm for the perch and 270 nm for the catfish. Type-II cells of both species displayed small, highly osmiophilic granules about 100 nm in diameter. The secretory granules of type-III cells (260 nm in the perch and 190 nm in the catfish) were round or slightly oval in shape and were filled with a finely particulate electron-dense material. Type-IV cells of the catfish were found in the gastric glands only. Their cytoplasm was filled with homogeneous, moderately electron-dense granules averaging 340 nm in diameter. The physiological significance of these different morphological types of gastric endocrine cells requires further investigation.  相似文献   

14.
Chromogranin A (CgA) is transported restrictedly to secretory granules in neuroendocrine cells. In addition to pH- and Ca(2+)-dependent aggregation, CgA is known to bind to a number of vesicle matrix proteins. Because the binding-prone property of CgA with secretory proteins may be essential for its targeting to secretory granules, we screened its binding partner proteins using a yeast two-hybrid system. We found that CgA bound to secretogranin III (SgIII) by specific interaction both in vitro and in endocrine cells. Localization analysis showed that CgA and SgIII were coexpressed in pituitary and pancreatic endocrine cell lines, whereas SgIII was not expressed in the adrenal glands and PC12 cells. Immunoelectron microscopy demonstrated that CgA and SgIII were specifically colocalized in large secretory granules in male rat gonadotropes, which possess large-type and small-type granules. An immunocytochemical analysis revealed that deletion of the binding domain (CgA 48-111) for SgIII missorted CgA to the constitutive pathway, whereas deletion of the binding domain (SgIII 214-373) for CgA did not affect the sorting of SgIII to the secretory granules in AtT-20 cells. These findings suggest that CgA localizes with SgIII by specific binding in secretory granules in SgIII-expressing pituitary and pancreatic endocrine cells, whereas other mechanisms are likely to be responsible for CgA localization in secretory granules of SgIII-lacking adrenal chromaffin cells and PC12 cells.  相似文献   

15.
Y Cetin 《Histochemistry》1990,94(1):31-44
A novel endocrine cell type has been identified in the guinea-pig gastric mucosa which preferentially occurs in the oxyntic area. Cells of this type exhibit immunoreactivities for bovine adrenal medulla dodecapeptide (BAM-12P) and in many cases for Met-enkephalin and are thus presumed to contain a pro-enkephalin-like precursor protein. Systematic immunohistochemical investigations show that these cells do not contain immunoreactivities for various enteric hormones, neuropeptides and biogenic amines (serotonin, histamine). However, they do contain immunoreactivity for chromogranin A, an acidic glycoprotein which is common to the majority of entero-endocrine cells. Using silver impregnation techniques BAM-12P immunoreactive cells prove to be argyrophil, but fail to react argentaffin. On the electron microscopical level, these cells contain a well-developed endoplasmic reticulum and Golgi apparatus and numerous polymorphous secretion granules which measure about 290 nm in diameter. The secretion granules are ovoid or pear-shaped but largely plump compared to those of enterochromaffin cells. Light and electron microscopical findings indicate that BAM-12P immunoreactive cells constitute an endocrine cell population of the gastric epithelium in addition to the "established" endocrine cells hitherto known in this location.  相似文献   

16.
Summary The endocrine pancreas of the Australian fattailed dunnart, Sminthopsis crassicaudata, was investigated by means of electron-microscopic immunocytochemistry using the protein A-gold technique on London resin (LR) white-embedded tissue. The primary antibodies used were raised against insulin, glucagon, somatostatin and pancreatic polypeptide. The morphology of the secretory granules differed in the four cell types. The insulin cells are pleomorphic, and the secretory granules composed of an electron-dense core surrounded by an electron-lucen halo. The glucago cells possess granules with an electron-dense core usually surrounded by a halo of less dense granular material. Somatostatin cells have large, less dense secretory granules. The pancreatic polypeptide cells show small, dense secretory granules. In order for an ultrastructural study to be considered reliable for the definite identification of endocrine cell types, it is essential that it be corroborated by immunocytochemical data at the light-or preferably electron-microscopic level. Recent developments in immuno-electron-microscopic techniques have contributed to a better knowledge of cells responsible for the secretion of a wide variety of hormones, as in this study.  相似文献   

17.
Summary The ultrastructure of the mucous and endocrine cells of the gastric mucosa of the cane toad (Bufo marinus) has been examined. Surface mucous cells line the entire gastric mucosa and pits. Many of their secretory granules contain an electron-dense core that remains unreactive after cytochemical testing for glycoproteins. A second spatially and structurally discrete population of mucous cells is present in the gastric glands. These glandular mucous cells are probably homologous with the antral gland and mucous neck cells of mammals; their secretory granules also contain non-glycoprotein cores. Three distinct populations of endocrine cells show structural homologies with gastric hormone-storing cells of higher vertebrates.This study was supported by grants from N.H. & M.R.C. (Australia) and the Clive and Vera Ramaeiotti Foundations  相似文献   

18.
Leptin is a hormone secreted by the gastric mucosa into the lumen of the stomach. It is present in its intact form in the intestine where it regulates nutrient absorption and intestinal mucosa integrity. We have identified the binding protein that protects leptin from the harsh conditions of the gastric juice. Immunoprecipitations and Western blot analyses demonstrated that leptin is present in the gastric mucosa and the gastric juice, bound to a protein corresponding to the extracellular domain of the leptin receptor. In the absence of this soluble receptor, leptin is rapidly degraded. Immunocytochemistry on rat gastric mucosa identified the cells and intracellular compartments involved in secretion of this complex. Leptin receptor extracellular domain and leptin are present along the rough endoplasmic reticulum-Golgi-granules secretory pathways and form a complex in the secretory granules of Chief and specific endocrine cells. The long-form membrane leptin receptor OB-Rb, the protease activator furin, and proprotein convertase 7 were found in Chief cell granules but not in those of endocrine cells. The shedding of the receptor occurs in the immature granules. It is concluded that in the immature secretory granules of Chief cells, furin activates proprotein convertase 7 that, in turn, cleaves the extracellular portion of membrane-bound leptin receptors. Leptin bound to its soluble receptor forms a complex that is resistant to the gastric juice. Endocrine cells, on the other hand, generate a soluble leptin receptor by mechanisms different from those of the exocrine cells.  相似文献   

19.
The neurotensin-cell is identified immunohistochemically and ultrastructurally by differential counting of endocrine cells in the gut of a primate (Tupaia belangeri). Utilizing light microscopy, the EC-cells are identified by the Masson-Fontana silver stain; with the same method the neurotensin cells are not stained. The other endocrine cells have been quantified in the small intestine using the peroxidase-antiperoxidase stain with antisera against glucagon, somatostatin, cholecystokinin, gastrin, secretin, pancreatic polypeptide, gastric inhibitory peptide and neurotensin. In the ileal mucosa of Tupaia, the most frequent endocrine cell is the EC-cell followed by the glucagonoid cell, (L-cell). The immunoreactive neurotensin cell represents the third most frequent endocrine cell in this region. On the ultrastructural level, this third most frequent endocrine cell is a heretofore undescribed cell, the N-cell, containing electron dense secretory granules measuring 335 +/- 87 nm in diameter.  相似文献   

20.
Summary Endocrine-like cells containing glucagon, glicentin or pancreatic polypeptide immunoreactivity in human foetal and adult stomach, with or without disease, were studied with the indirect immunoperoxidase method and mirror sectioning technique. In foetal and neonatal oxyntic mucosae, there were endocrine-like cells with glucagon and glicentin immunoreactivities and argyrophilia. Cells containing glicentin immunoreactivity alone were detected earlier than glucagon cells during foetal development, and were also distributed throughout foetal to neonatal life. Bovine pancreatic polypeptide immunoreactivity coexisted in a subpopulation of the glucagon-glicentin cells. These cells were absent from normal oxyntic mucosa in the postneonatal period and from normal antral mucosa throughout life. Hamartomatous polyp in adult oxyntic mucosa, hyperplastic oxyntic mucosa in Menetrier's disease and atrophic oxyntic mucosa in a remnant stomach with cancer showed scattered glucagon-glicentin cells, but few or no cells containing bovine pancreatic polypeptide. Intestinalized mucosa showed plentiful glicentin cells with occasional glucagon and/or bovine pancreatic polypeptide immunoreactivity. Some gastric cancer cells of both diffuse and adenoplastic types contained immunoreactive glicentin and, less frequently, glucagon. Bovine pancreatic polypeptide immunoreactivity was detected in a few adenoplastic cancer cells, but not in diffuse type cells. Three different anti-pancreatic polypeptide sera against bovine, porcine or human pancreatic polypeptide detected basically the same cells mentioned above, but pancreatic polypeptide cells lacking human pancreatic polypeptide immunoreactivity were also present in foetal oxyntic mucosa. Immunoabsorption tests revealed that the bovine pancreatic polypeptide immunoreactivity was remote from peptide YY and neuropeptide Y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号