首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
A direct densitometric method for determination of diazepam and its metabolites in urine was developed. The proposed procedure involves acid hydrolysis of urine specimens, thereby converting diazepam and its metabolites into benzophenones [2-methylamino-5-chlorobenzophenone (MACB) and 2-amino-5-chlorobenzophenone (ACB)]. It is followed by extraction with chloroform—isopropanol (3:1, v/v). The two benzophenones were separated on thin-layer chromatography plates using hexane—diethyl ether—acetic acid (80:10:10) as a mobile phase. Quantitation of the MACB and ACB spots was achieved by direct ultraviolet densitometry. The limit of detection was 0.5 μg per ml of urine for both benzophenones. The proposed method is simple, rapid, reproducible and has been found to be effective for direct determination of diazepam and its metabolites in urine.  相似文献   

2.
The antibody for enzyme immunoassay was raised against clenbuterol-diazo-BSA, and salbutamol-carboxymethyl ether-biocytin was used as a label. Procedural blanks from 500 negative urine samples were always <0.2 ppb salbutamol or <0.02 ppb clenbuterol equivalents, and a residue level of 1 ppb was detected with good reliability. After treatment of veal calves with anabolic dosages, residue levels in urine amounted to 10–200 ppb clenbuterol or salbutamol. β-Agonists were separated by high-performance liquid chromatography on LiChrospher RP-Select B columns, and acidic methanol—buffer or acetonitrile—buffer mobile phases. Combinations of high-performance liquid chromatography and enzyme immunoassay were used for confirmation.  相似文献   

3.
A qualitative and quantitative analysis of the conjugated 1β- and 6α-hydroxy bile acids, including common bile acids, in human urine using high-performance liquid chromatography with chemiluminescence detection is described. After extraction of urine with C18 silica cartridges, the bile acids were separated into non-conjugated, glycine, taurine and sulphate fractions by ion-exchange chromatography on a lipophilic gel. Solvolysis of the sulphate was carried out by treatment with trifluoroethanol in acetone containing hydrochloric acid, and the liberated amino acid conjugates were fractionated again. The individual bile acids were separated on a reversed-phase C18 column (Bile Pak II), with detection by an immobilized 3α-hydroxysteroid dehydrogenase enzyme reactor and chemiluminescence reaction of the generated NADH using 1-methoxy-5-methylphenazinium methylsulphate—isoluminol—microperoxidase system. The assay method showed the detection limits ranging from 8 to 250 pmol for the bile acids tested. Analysis of urine samples obtained from newborns, non-pregnant women and women in late pregnancy showed a large difference in bile acid composition and conjugation mode, suggesting that bile acid metabolism is different during fetal and neonatal periods.  相似文献   

4.
We describe the first method for routine measurement of prednisone, prednisolone and 6β-hydroxyprednisolone concomitantly in urine. Urine (3 ml) is extracted with ethyl acetate, washed with base and separated by high-performance liquid chromatography on a silica column with a solvent system of hexane—diethyl ether—ethanol—tetrahydrofuran—glacial acetic acid (59.9:31:2.3:6.5:0.3, v/v). The steroids are detected at 254 nm. Because no conventional internal standard was found, 6β-[3H]hydroxycortisol and [3H]prednisolone are added to urine prior to extraction; 3H is monitored by a radioactivity detector coupled with the chromatograph. The assay exhibits linearity from 200 to 7500 ng and an inter-day variability of < 11.4% (C.V.).  相似文献   

5.
A sensitive and selective method for the detection of pholcodine and its metabolite morphine in urine using high-performance liquid chromatography is described. It involves on-line clean-up of urine on a trace enrichment column packed with a polymeric strong cation-exchange material. Pholcodine and its metabolites were separated on two analytical columns with different selectivities. Pholcodine was detected by a fluorescence detector and morphine was detected electrochemically. One system, based on reversed-phase chromatography, applied a polystyrene—divinylbenzene column and gradient elution. The other system was based on normal-phase chromatography with a silica column and isocratic elution. Morphine was confirmed to be a metabolite of pholcodine by reversed-phase chromatography and electrochemical detection. Two unidentified metabolites of pholcodine were separated from pholcodine by normal-phase chromatography and detected by fluorescence detection.  相似文献   

6.
A simple and highly sensitive high-performance liquid chromatographic method for the direct determination of urinary glucuronide conjugates is described. The method is based on the direct derivatization of the glucuronic acid moiety in glucuronide conjugates with 6,7-dimethoxy-1-methyl-2 (1 H)-quinoxalinone-3-propionylcarboxylic acid hydrazide. The derivatization reaction proceeds in aqueous solution in the presence of pyridine and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at 0–37°C. The resulting fluorescent derivatives are separated on a C18 column using methanol—acetonitrile—0.5% triethylamine in water (1:1:2, v/v) as mobile phase, and are detected spectrofluorimetrically at 445 nm with excitation at 367 nm. The detection limits (signal-to-noise RATIO = 3) for the glucuronides are 13–48 fmol for an injection volume of 10 μl (130–480 fmol per 5 μl of human urine). The method was applied to the measurement of etiocholanorone-3-glucuronide and androsterone-3-glucuronide in human urine. The method is simple and rapid without conventional liquid—liquid extraction of the glucuronides from urine.  相似文献   

7.
A method is described for the determination of the neutral metabolites formed from catecholamines and various other structurally related phenylethylamines by using gas chromatography—chemical ionization—mass spectrometry. These metabolites (phenylglycols and phenylethanols) were extracted from urine specimens and converted to pentafluoropropionyl derivatives which were separated on either 3% OV-1, 3% SP-2250, or 3% QF-1 packed columns. Our results demonstrate the presence in human urine of p-hydroxyphenylglycol, a metabolite of octopamine. One patient excreted 13 and 91 μg/day of free and total (free + conjugated) p-hydroxyphenylglycol, respectively. Treatment with a monoamine oxidase inhibitor reduced the excretion of total p-hydroxyphenylglycol to 30% of baseline level.  相似文献   

8.
A method for the qualitative and quantitative simultaneous analysis of dioxyanthraquinone, desacetyl-Bisacodyl, phenolphthalein and Oxyphenisatin in human urine using gas chromatography—mass spectrometry (GC—MS) has been developed. The compounds were extracted from urine at pH 7.5 with diethyl ether using Extrelut extraction columns, followed by evaporation and trimethylsilylation.The method used electron beam ionization GC—MS employing a computer-controlled multiple-ion detector (mass fragmentography). The recovery from urine for the various compounds was between 80% and 100%. The detection limit for these compounds was in the range 0.01–0.05 μg/ml of urine.The method proved to be suitable for measuring urine concentrations for at least four days after administration of a single oral low therapeutic dose of the laxatives to sixteen healthy volunteers.  相似文献   

9.
The isolation of two Thormählen-positive compounds from the urine of a patient with malignant melanoma and the elucidation of their structure by gas chromatography—mass spectrometry is described. The compounds were isolated using a poly-N-vinylpyrrolidone column and separated by preparative thin-layer chromatography. After elution they were analyzed by gas chromatography and gas chromatography—mass spectrometry as their trimethylsilyl derivatives and after hydrolysis also as their tert.-butyldimethylsilyl derivatives. The results showed the main Thormählen-positive compound A to be the glucuronide of 5-hydroxy-6-methoxyindole, whereas the minor compound AX appeared to be the glucuronide of its isomer 6-hydroxy-5-methoxyindole.  相似文献   

10.
Phencyclidine and monohydroxy metabolites were measured in human urine using gas chromatography—mass fragmentography with methane chemical ionization. Samples were extracted either untreated or following acid hydrolysis, derivatized with heptafluorobutyric anhydride, separated on a 3% SE-30 column and analyzed by mass fragmentography. The assay was sensitive to ca. 0.01 μg/ml for phencyclidine and ca. 0.05 μg/ml for the metabolites. Urine samples from five human subjects enrolled in a methadone maintenance program who had ingested phencyclidine were analyzed. The phencyclidine concentration ranged from 0.3 to 23.7 μg/ml. The concentrations of metabolites ranged from 0 to 1.8 μg/ml. A new monohydroxy metabolite was detected in the samples, but its structure was not fully elucidated. The specificity of the assay was examined.  相似文献   

11.
A simple, rapid and reproducible reversed-phase high-performance liquid chromatographic method for the simultaneous determination of benzoic acid (BA), phenylacetic acid (PAA) and their respective glycine conjugates hippuric acid (HA) and phenaceturic acid (PA) in sheep urine is described. The procedure involves only direct injection of a diluted urine sample, thus obviating the need for an extraction step or an internal standard. The compounds were separated on a Nova-Pak C18 column with isocratic elution with acetate buffer (25 mM, pH 4.5)—methanol (95:5). A flow-rate of 1.0 ml/min, a column temperature of 35°C and detection at 230 nm were employed. These conditions were optimized by investigating the effects of pH, molarity, methanol concentration in the mobile phase and column temperature on the resolution of the metabolites. The total analysis time was less than 15 min per sample. At a signal-to-noise ratio of 3 the detection limits for ten-fold diluted urine were 1.0 μg/ml for BA and HA and 5.0 μg/ml for PAA and PA with a 20-μl injection.  相似文献   

12.
A method for the determination of hexahydrophthalic acid, a metabolite of hexahydrophthalic anhydride, in human urine has been developed. The urine was worked-up by liquid—solid extraction, esterified with boron trifluoride—methanol, and analysed by capillary gas chromatography and selected-ion monitoring. Hexadeuterium-labelled hexahydrophthalic acid was used as the internal standard. The precision was 4% at 0.7 μg/ml and 5% at 0.07 μg/ml. The recovery of the acid for the overall method was 101% at 0.07 μg/ml of urine (with a coefficient of variation of 4%) and 95% at 0.7 μg/ml (coefficient of variation 2%). The limit of detection was 20 ng/ml urine.  相似文献   

13.
A gas chromatographic—mass spectrometric (GC—MS) method is presented for the analysis of azacyclonol (AZA), a metabolite of terfenadine in serum and urine specimens. Following an alkaline extraction, AZA and an internal standard were derivatized using heptafluorobutyric anhydride. Fourier transform infrared spectrometry suggested that two sites on the AZA molecule were derivatized. GC—MS of the extracts had a limit of quantitation (LOQ) of 1 ng/ml and linear range of 1–1000 ng/ml in urine. Four volunteers were administered a therapeutic regimen of terfenadine followed by urine and serum specimen collection(s) during the next seven days. The results indicated that following a 60-mg dose of terfenadine each 12 h for five days, (1) AZA appears in urine within 2 h, (2) urine AZA concentrations were above the LOQ 72 h following the last dose, (3) peak urine concentrations were as high as 19 000 ng/ml, and (4) mean serum concentration following the ninth dose was 59 ng/ml.  相似文献   

14.
Summary Pachysolen tannophilus contains — in addition to an NADPH-linked xylose reductase — a separate NADH-linked one, in this respect differing from the yeast Pichia stipitis. Both enzyme proteins can conveniently be separated from each other by either ion exchange chromatography or chromatofocusing.  相似文献   

15.
The dioxopiperazine metabolites of quinapril in plasma and urine were extracted with hexane—dichloroethane (1:1) under acidic conditions. Following derivatization with pentafluorobenzyl bromide and purification of the desired reaction products using a column packed with silica gel, the metabolites were analysed separately by capillary column gas chromatography—electron-impact mass spectrometry with selected-ion monitoring. The limits of quantitation for the metabolites were 0.2 ng/ml in plasma and 1 ng/ml in urine. The limits of detection were 0.1 ng/ml in plasma and 0.5 ng/ml in urine, at a signal-to-noise ratio of > 3 and > 5, respectively. The proposed method is applicable to pharmacokinetic studies.  相似文献   

16.
A high-performance liquid chromatographic method for the determination of picotamide in human plasma and urine is described. After addition of an internal standard (bamifylline), the plasma and urine samples were subjected to liquid—liquid extraction and clean-up procedures. The final extracts were evaporated to dryness and the resulting residues were reconstituted in 100 μl of methanol—water (50:50, v/v) and chromatographed on a LiChrosorb RP-SELECT B reversed-phase column coupled to an ultraviolet detector monitored at 230 nm. Chromatographic analysis takes about 10 min per sample. The assay was linear over a wide range and has a limit of detection of 0.005 and 0.1 μg/ml in plasma and urine, respectively. It was selective for picotamide, accurate and robust and thus suitable for routine assays after therapeutic doses of picotamide.  相似文献   

17.
Tryptophan and some of its indole metabolites were separated by thin-layer chromatography, stained with the Van Urk—Salkowski reagent, and quantitated by scanning densitometry. The application of this technique for the detection of the indoles in urine samples, employing Sep-Pak C18 cartridges for extraction, was demonstrated. The proposed method is simple and accurate. The detection limits were 2 μg/ml 5-hydroxytryptophan, 1.75 μg/ml 5-hydroxyindolyl-3-acetic acid, 1.5 μg/ml tryptophan, 0.8 μg/ml indolyl-3-acetic acid, 0.9 μg/ml indolyl-3-butyric acid, 1.75 μg/ml serotonin, and 1.25 μg/ml tryptamine.  相似文献   

18.
The use of micellar liquid chromatography for the determination of diuretics in urine by direct injection of the sample into the chromatographic system is discussed. The retention of the urine matrix at the beginning of the chromatograms was observed for different sodium dodecyl sulphate (SDS) mobile phases. The eluent strengths of a hybrid SDS—methanol micellar mobile phase for several diuretics were compared and related to the stationary phase/water partition coefficient with a purely micellar mobile phase. The urine band was appreciably narrower with a mobile phase of 0.05 M SDS—5% methanol (v/v) at 50°C (pH 6.9). With this mobile phase the determination of bendroflumethiazide and chlorthalidone was adequate. Acetazolamide, ethacrynic acid, furosemide, hydrochlorothiazide and probenecid were overlapped by the urine matrix, and the retention of amiloride and triamterene was too long.  相似文献   

19.
The urinary excretion and metabolic pattern of 17β-trenbolone, a synthetic anabolic steroid hormone used as a growth promotor for beef cattle in several countries, has been studied in a human subject. For the separation of the metabolites of 17β-trenbolone, a reversed-phase high-performance liquid chromatographic method was established. The method was tested with metabolites obtained from incubation of 17β-trenbolone with rat liver microsomes. Fifteen metabolites could be well separated in one run by using a concave acetonitrile—water—methanol gradient. After ingestion of the tracer-labelled hormone at a dose of 0.04 mg/kg body weight 54% of the administered radioactivity was found in the urine after 26 h and 63% after 72 h. Of the urinary material 54% was present as glucuronides, which contained mostly 17α-trenbolone, 17β-trenbolone and trendione. At least five other polar metabolites, presumably hydroxylated products, were found in smaller amounts, mostly in the unconjugated and sulphated fractions. Thus, the disposition of 17β-trenbolone in humans differs significantly from that in rats, which may have a bearing on the toxicological evaluation of the hormone.  相似文献   

20.
The enantiomers of zopiclone and its two chiral N-desmethyl and N-oxide metabolites were determined in urine using a coupled achiral—chiral liquid chromatographic method. After liquid—liquid extraction, zopiclone and its two metabolites were quantified on a cyanopropyl column. After fluorimetric detection on the achiral system, the eluent was switched through a silica precolumn in order to trap and concentrate the analytes. Each fraction was then backflushed separately onto a carbamate cellulose chiral stationary phase in order to determine the enantiomeric ratios. The coupled system was automated with an autosampler and a switching valve programmed by an integrator. The method was validated, and a first trial was performed on urine samples of a volunteer treated with 15 mg of racemic zopiclone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号