首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ganglioside content of rat hepatocytes increases several-fold during the first 6 days in monolayer culture. To correlate increased levels with rates of de novo synthesis, the incorporation of N-acetyl-[6-3H]D-mannosamine into individual gangliosides was determined. The calculation of synthetic rates was made possible by the simultaneous measurement of the specific radioactivity of the immediate sialic-acid donor, CMP-Neu5Ac. The CMP-Neu5Ac content of hepatocytes was found by HPLC analysis to be 30.5 nmol/g of plated cells. The specific radioactivity of this precursor pool reached a constant plateau 5 h after addition of the labeled N-acetyl-mannosamine and remained constant for at least 70 h. The incorporation into individual gangliosides was measured in primary cultures of rat hepatocytes between 72 and 144 h after seeding. During this period, the increase in ganglioside levels was greatest. The highest rates of incorporation were seen in GD1a followed by GM3, GM1, GD3 and the polysialylated compounds. The following rates of synthesis (nmol per 60 h and mg of protein) were calculated: GD1a 0.68, GM3 0.59, GM1 0.36, GD3 0.13 and GT1 0.02. These values are compared with the net increase of the gangliosides as measured by the resorcinol reaction.  相似文献   

2.
Expression of gangliosides in the liver was examined in primary cultures of hepatocytes from adult rats and liver tissues from rats of different ages. Hepatocytes were isolated from 7-week-old rat liver and cultured in L-15 medium containing insulin, dexamethasone and 10% fetal bovine serum. Hepatocytes proliferated only on the first day, and then ceased proliferation. The content of GD3 and GD1a increased during the period of active proliferation and reached a nearly constant level, whereas GM1, GD1b, GT1b, and GQ1b gradually increased throughout culture. Addition of EGF to the culture medium caused significant increases in the content of GD3, and to a lesser degree of GM3, but exhibited little effect on the expression of other ganglioside species. The specific induction of GD3 and GM3 expression by EGF was reproduced under serum-free conditions, despite the lack of hepatocyte proliferation. Expression of gangliosides in cultured hepatocytes was also modulated by cell density; higher cell density brought about increased content of GM1, GD1a, GD1b, GT1b, and GQ1b with concomitant reduction of GM3 in cells. The composition of gangliosides in liver tissues demonstrated a unique developmental pattern. GD3 and GD1a were strongly expressed in E-16 embryonic tissue and rapidly decreased with increasing age. GD1b, GT1b, and GQ1b were found only in postnatal liver tissues. These findings suggest that the expression of gangliosides in rat hepatocytes and liver tissues are regulated by growth- and development-dependent factors.  相似文献   

3.
In this study we show that the ganglioside content and pattern of human skin fibroblasts change along the process of cell subculture progression by varying the cell density.GM3, GD3 and GD1a were components of the total cell ganglioside mixtures extracted from cells, but GD1a was in all the extracts a minor component or very scant. Other gangliosides present in traces were not characterised. The fibroblast ganglioside content of 52 pools of cells obtained from 5 different cell lines cultured at variable cell density ranged from 2.0 to 13.1 nmoles per mg of cell protein. The molar ratio between GM3 and GD3 varied from 418 to 0.6 in the ganglioside mixtures, as determined by densitometric quantitative analysis after thin layer chromatographic separation.Both the ganglioside content and the GM3/GD3 molar ratio were constant along several passages of subculture progression performed by plating cells collected at confluence. Instead, when the subculture progression was performed by plating cells collected at a few days after reaching confluence, a progressive increase of the ganglioside content was observed. GD3 increased proportionally more than GM3 so that a progressive decrease of the ratio between GM3 and GD3 was observed. In some experiments, GD3 was very scant at the beginning of the progression, while it was near 30% after 5 passages under these conditions. The progressive increase of GD3 along the high density cell population subculture progression was associated to a moderate increase of the mRNA GD3 synthase. Published in 2003.  相似文献   

4.
The qualitative and quantitative pattern of endogenous gangliosides and the routes of metabolic processing of exogenous GM1,3H labeled in the sphingosine moiety (Sph-3H GM1) were studied in cerebellar granule cells during differentiation in vitro. During the first 7–8 days in culture the ganglioside content markedly increased, and the qualitative pattern showed, in percentage terms, a drastic decrease of GD3 and a marked increase of GD2, O-Ac-GT1b, O-Ac-GQ1b and GQ1b. After pulse with (Sph-3H) GM1, at all the investigated days in culture, different radiolabelled lipids were formed indicating that taken up exogenous GM1 was degraded and that its catabolic fragments, and partly GM1 itself, were used for biosynthetic purposes; moreover radioactive water was measured in the culture medium during chase indicating that labelled sphingosine underwent also degradation. The uptake of exogenous GM1 and the extent of its metabolic processing per cell unit increased during differentiation: a) GM2 was the major metabolic product and was relatively more abundant at 2 than 7 days in culture; b) the percentage of metabolites of biosynthetic origin over total metabolites increased during differentiation, especially at the short pulse times; c) among the metabolites of anabolic origin sphingomyelin equalled gangliosides at 2 days, whereas it was largely overcome by gangliosides at 7 days in culture; d) at 4 and 7 days in culture a radioactive substance, not yet identified, was present, whereas no trace of it was found at 2 days. In conclusion, cerebellar granule cells in culture feature a different pattern of endogenous gangliosides and display different ability to metabolically process exogenous GM1 ganglioside in the undifferentiated and fully differentiated stage.Abbreviations used: this article follows the ganglioside nomenclature of Svennerholm [J. Lipid Res., 5, 145–155, (1964)] and the IUPAC-IUP recommendations for lipid nomenclature [Lipids, 12, 455–468, (1977)] NeuAc N-Acetylneuraminic acid; sph, sphingosine - O-Ac O-acetylated - TLC thin layer chromatography  相似文献   

5.
Short-term and long-term (greater than 7 months) cultured astrocytes from 14-day-old rat brain were analyzed for ganglioside content. Analysis of the extracted gangliosides by HPTLC revealed that ganglioside GM1 was absent in 35 days and 235 days cultured astrocytes, and that the predominant ganglioside was GM3, showing a double band in both cases. A small amount of the disialogangliosides (GD3, GD1a) was also detected. More than 70% of radioactivities into ganglioside fractions by cultured astrocytes, in the presence of N-[3H]-acetylmannosamine, appeared in ganglioside GM3. The upper band component of GM3 increased 60% in long-term astrocyte cultures compared to 35-day-old cultures. Also, an increased GD3 content in long-term astrocyte cultures was detected. These results suggest that the increase of GD3 and upper band GM3 in long-term cultured astrocytes might be related to the appearance of small processes showing strong reactivity against GFAP and vimentin during astrocyte-subculture.  相似文献   

6.
Abstract: Changes in the ganglioside long-chain base (LCB) composition in rat cerebellar granule cells in culture were studied during differentiation and aging. The total native ganglioside mixtures, extracted from the cells maintained in culture up to 22 days, were fractionated by reversed-phase HPLC, each ganglioside homogeneous in the oligosaccharide chain as well as in the LCB being quantified. Two main LCBs were components of the ganglioside species of cultured cells, the C18:1 LCB and the C20:1 LCB. The content of C20:1 ganglioside molecular species was low and quite constant during differentiation, comprising ∼8% of the total ganglioside species content, the C20:1 LCB appearing to be represented more in the ganglioside of the "b series" (GD1b, GT1b, and GQ1b) than in the "a series" (GM1 and GD1a). During aging in culture, for 8–22 days, the content of the C20:1 species of all gangliosides increased, being more pronounced for GM1 and GD1a.  相似文献   

7.
During rat liver regeneration, the ganglioside content and distribution undergo significant changes after partial hepatectomy; total liver gangliosides increase remarkably till the 4th day after surgery, thereafter progressively decreasing to reach the values of sham-operated controls at the 12th day. The qualitative pattern is characterized by the 95% relative increase of GD1a at the 4th day and the 40% relative decrease of GD1b. In order to investigate the processes of ganglioside penetration into cells, degradation and biosynthesis, radiolabelled GM1 ([Sph-3H] GM1) was administered. One day after hepatectomy the liver uptake and metabolism of exogenous ganglioside were significantly reduced. Three days post-surgery these parameters were restored to control values; however an increased radioactivity incorporation was found in GD1a, thus suggesting an enhancement of its biosynthesis around the 4th day. The data reported here suggest that in the first two days after partial hepatectomy, the ganglioside degradation is reduced with a consequent increase of ganglioside content; later on the catabolic routes normalize and some biosynthetic processes leading to GD1a are enhanced. GD1a seems to be a marker of a peculiar transition phase of liver regeneration.  相似文献   

8.
Gangliosides in Human Fetal Brain   总被引:1,自引:0,他引:1  
The ganglioside concentration and composition were determined in 42 human fetal brains from gestational week 10 to 22, a period that is morphologically characterized by rapid neuroblast proliferation and migration. The ganglioside concentration was constant during this period, approximately 1 mumol of ganglioside sialic acid/g of fresh tissue weight. At gestational week 10 the ganglioside pattern was dominated by gangliosides of the ganglio b series, with the major ganglioside being GT1b, contributing 40% of total ganglioside sialic acid, whereas GD1b and GD3 contributed only 15 and 10%, respectively. The proportion of b series ganglioside decreased to gestational week 22, with the most pronounced relative reduction affecting GD3, but also GT1b and GD1b to a lesser extent. The ganglioside GQ1b increased in content from gestational week 10 and peaked around week 16. The proportion of GD1a increased markedly between gestational week 12 and 14 and slowly between week 14 and 18 and then increased rapidly from week 20. Ganglioside GM1 underwent a similar change. Gangliosides of the lacto series contributed 6-10% of ganglioside sialic acid between gestational week 10 and 15, and thereafter the proportion slowly decreased. 3'-isoLM1 decreased rapidly in content from gestational week 10 (20 nmol/g of fresh weight) to week 22 (less than 0.5 nmol/g of fresh weight), whereas the gangliosides of the neolacto series (3'-LM1 and 3',8'-LD1) showed a slower and less marked decline in level. The biological significance of the ganglioside changes is discussed.  相似文献   

9.
Developmental profiles of gangliosides in trisomy 19 mice   总被引:1,自引:0,他引:1  
The ganglioside composition of the cerebrum, cerebellum, brainstem, liver, heart, and spleen was analyzed quantitatively in trisomy 19 (Ts19) mice aged 4 to 12 days postpartum. The developmental profiles of cerebral gangliosides were similar in Ts19 mice and control littermates: Total ganglioside-sialic acid as well as the proportions of the individual gangliosides GD1a and GM1 increased with age, while the percentages of GQ1b and GT1b decreased during development. Both the accretion of the total ganglioside content and the development of the individual ganglioside fractions were delayed by 2-3 days in the Ts19 telencephalon. Likewise, the shift from the b- to the a-pathway of ganglioside synthesis was retarded. Ganglioside development was equally delayed in the cerebellum and the brainstem of Ts19 mice. Since in Ts19 mice, morphogenesis of several brain regions is similarly delayed by 2 days, these results confirm the usefulness of gangliosides as biochemical markers for brain maturation. In contrast to brain gangliosides, the ganglioside composition of the Ts19 livers was clearly distinguished from that of control livers. Total ganglioside-bound sialic acid was increased by 35-50% in Ts19 livers. This elevation in ganglioside content not explicable by a simple delay in development was mainly due to an increase in GD3 and fraction 2, which is likely to contain GD1a and GD1b. In contrast, GM2 which increased considerably with age in control mice persisted on a low level in Ts19 livers. Comparable alterations of the ganglioside pattern were neither observed in the spleen nor in the heart of Ts19 mice. The data presented give additional evidence that ganglioside synthesis in the liver is under a different regulation mechanism than that in the brain, heart, and spleen.  相似文献   

10.
The Zajdela hepatoma is a transplantable ascitic tumor of the rat, characterized by a very simple ganglioside pattern, GM3 being the main compound. When these cells are adapted to monolayer culture, they undergo a maturation process and the total cellular ganglioside concentration increases progressively; GM2, GM1 and GD3 amounts rose and GD1a accumulated. These modifications in the ganglioside pattern complexity are not affected by the addition of ascitic fluid to the cultures, nor by growth in serum free, hormone-supplemented medium. They are totally reversible when the cultured hepatoma cells are reinjected into a rat and developed an ascitic tumour. Cell growth control and adhesion processes could be related to the maturation process of these hepatoma cells growing in monolayer, which may constitute a convenient model for further investigations on the regulation of membrane glycolipid composition by the external environment.  相似文献   

11.
1. Female non-pregnant rats were intramuscularly injected with pentazocine for 3 months. Liver showed a statistically significant (P less than 0.05) increase in its ganglioside content after the pentazocine treatment; in addition, no changes were found in the kidney ganglioside content. 2. We have also found changes in the ganglioside pattern of these rats after the pentazocine injection. The GM1 and GD1b liver content was decreased (P less than 0.05) in parallel with an increase (P less than 0.05) in GD3 and GT1b content; kidney showed a decrease (P less than 0.05) in GM1, GD1a and GD1b content and an increase (P less than 0.05) in GM4, GD2, GT1b and GQ content. 3. Female pregnant rats were also injected with pentazocine from the first to the nineteenth day of the gestation period. The total ganglioside content of liver and kidneys from mothers and their newborns did not show statistically significant differences after the treatment. 4. Mothers showed a decrease (P less than 0.05) in the GM1 content of liver and an increase (P less than 0.05) in the GT1b content of liver and GM1, GD3 and GD1a content of kidney. Only the GM3 content from kidney was increased (P less than 0.001). 5. Newborns showed minor changes in their ganglioside pattern. GT1b content from liver and GD2 and GQ content from kidneys were decreased (P less than 0.05).  相似文献   

12.
The activities of five glycolipid-glycosyltransferases, GL2, GM3, GM2, GM1, and GD1a synthase, were determined in a cell-free system with homogenate protein of total rat liver, isolated hepatocytes, Kupffer cells, and sinusoidal endothelial cells. In rat liver parenchymal and nonparenchymal cells ganglioside synthases were distributed differently. Compared to hepatocytes, Kupffer cells expressed a nearly sevenfold greater activity of GM3 synthase, but only 14% of GM2, 19% of GM1, and 67% of GD1a synthase activity. Sinusoidal endothelial cells expressed a pattern of enzyme activities quite similar to that of Kupffer cells with the exception of higher GM2 synthase activity. Activity of GL2 synthase was distributed unifromly in parenchymal and nonparenchymal cells of rat liver, but differed by sex. It was 1 to 2 orders of magnitude below that of all the other ganglioside synthases investigated. The results indicate GL2 synthase regulates the total hepatic ganglioside content, and hepatocytes but not nonparenchymal liver cells have high enzymatic capacities to form a-series gangliosides more complex than GM3.  相似文献   

13.
Several studies have demonstrated that transfer of oncogenes in cultured cells reproducibly induces transmissible alterations in their ganglioside profile; the transfection of the same oncogene into different cell lines and the different localization of the oncogene product result in a different ganglioside expression. In the present study the modifications of the ganglioside pattern in mammary carcinomas induced in transgenic mice by the activated form of the rat neu oncogene have been investigated. Whereas control mammary tissues contain quite exclusively GM3, all neoplastic samples show a substantial decrease of this ganglioside, an accumulation in variable amount of GM3-derived species (GM1, GD3, GD1a, GD1b, GT and GQ) and the appearance of new, not yet identified, sialic acid containing molecules. Interestingly, three out of 10 tumors analyzed, even if histologically comparable to the others but with a larger dimension, show a significative difference as regard to the GM1, GD3 and GD1a content. Our data suggest that an activated oncogene may induce also in vivo a specific and transmissible alteration in the ganglioside pattern, but this distribution could be susceptible to further modifications during the tumor progression.  相似文献   

14.
Gangliosides in rat kidney were analyzed for their composition, regional distribution, and developmental changes. Renal tissue from 7-week-old rats showed a GM3-dominant pattern with GD3 and several minor ganglioside components including GM4, GM2, GD1a, and an unknown ganglioside (ganglioside X). The tissue also contained c-series gangliosides that included GT3 as the main component with GT2 in a lesser amount. Ganglioside analysis of cortical and medullary regions of renal tissue suggested the restricted localization of some gangliosides. While GM4 and GD3 were enriched in the cortical region, GM2 was distributed mainly in the medullary area. Renal gangliosides showed unique developmental profiles during a period from Embryonic Day 20 (E20) to 7 weeks postnatal. The content of renal gangliosides increased from E20, reached the highest around Postnatal Day 1, and thereafter, decreased rapidly to the adult level. The ratio of N-glycolylneuraminic acid to total sialic acids in gangliosides tended to change in inverse proportion to the amount of total sialic acids. The composition of major gangliosides in renal tissues shifted from GD3-dominant to GM3-dominant patterns with advancing ages. While GM1 was expressed only at early stages of the development, GM4, GM2, and ganglioside X appeared after Postnatal Day 3. The expression of c-series gangliosides was less affected through the period examined. These results suggest that gangliosides may be implicated with development and function of rat kidney.  相似文献   

15.
Developmental changes in ganglioside composition and biosynthesis was studied in rat brain between embryonic day (E) 14 and birth. In E14 brains, GM3 and GD3 were predominant. At E16, "b" series gangliosides, such as GD1b, GT1b, and GQ1b, increased in content. After E18, "a" series gangliosides such as GM1, GD1a, and GT1a increased in content, and the content of GM3 and GD3 markedly decreased. Because of these changes in composition, we determined the activities, in homogenates of embryonic brains, of two key enzymes of ganglioside synthesis: sialyltransferase for the synthesis of GD3 from GM3 and N-acetylgalactosaminyltransferase for GM2 synthesis from GM3. The sialyltransferase activity (GM3----GD3) was constant between E14 and E18 but decreased rapidly from E18 to birth. In contrast, the N-acetylgalactosaminyltransferase activity (GM3----GM2) increased between E14 and E18 but was constant from E18 to birth. These changes in ganglioside composition and enzymatic activities indicate that during development there is a shift from synthesis of the simplest gangliosides of the "a" and "b" pathways to synthesis of the more complex gangliosides.  相似文献   

16.
We describe herein the enzyme behavior of MmNEU3, the plasma membrane-associated sialidase from mouse (Mus musculus). MmNEU3 is localized at the plasma membrane as demonstrated directly by confocal microscopy analysis. In addition, administration of the radiolabeled ganglioside GD1a to MmNEU3-transfected cells, under conditions that prevent lysosomal activity, led to its hydrolysis into ganglioside GM1, further indicating the plasma membrane topology of MmNEU3. Metabolic labeling with [1-(3)H]sphingosine allowed the characterization of the ganglioside patterns of COS-7 cells. MmNEU3 expression in COS-7 cells led to an extensive modification of the cell ganglioside pattern, i.e. GM3 and GD1a content was decreased to about one-third compared with mock-transfected cells. At the same time, a 35% increase in ganglioside GM1 content was observed. Mixed culture of MmNEU3-transfected cells with [1-(3)H]sphingosine-labeled cells demonstrates that the enzyme present at the cell surface is able to recognize gangliosides exposed on the membrane of nearby cells. Under these experimental conditions, the extent of ganglioside pattern changes was a function of MmNEU3 transient expression. Overall, the variations in GM3, GD1a, and GM1 content were very similar to those observed in the case of [1-(3)H]sphingosine-labeled MmNEU3-transfected cells, indicating that the enzyme mainly exerted its activity toward ganglioside substrates present at the surface of neighboring cells. These results indicate that the plasma membrane-associated sialidase MmNEU3 is able to hydrolyze ganglioside substrates in intact living cells at a neutral pH, mainly through cell-to-cell interactions.  相似文献   

17.
Medulloblastoma biopsies are heterogenous and might contain normal brain tissue, which limits the usefulness of such tumor material for biochemical analyses. We have, therefore, examined the gangliosides and their metabolism using the medulloblastoma cell lines. Daoy and D341 Med, cultured both in vitro and as xenografts in nude mice. The ganglioside patterns in the Daoy showed a switch from a high GM2, 70% (mol% of total ganglioside sialic acid) and low lactoseries gangliosides (2%) content in monolayer cultures, to a high proportion of lactoseries gangliosides (50%) and virtually no GM2 (1%) in xenografts, but an increased proportion of other a-series gangliosides. The D341 Med showed a similar change regarding the lacto-series gangliosides from 1% in suspension culture to 10% in xenografts. The activity of five glycosyltransferases, GM3, GD3, GM2, GM1 and LA2 synthases, did not parallel the ganglioside patterns and could not account for the noted variations therein. In the Daoy cell line the LA2 synthase as well as the GM2 synthase activity was relatively high in both culture systems, despite the marked difference in the expression of GM2 and the lactoseries gangliosides. These results suggest that environmental factors play a crucial role for the in vivo activity of the glycosyltransferases.  相似文献   

18.
Bovine milk undergoes changes in its ganglioside contents during the different stages of lactation. These contents are higher in colostrum (7.5 mg of lipid-bound NeuAc/kg) than in transitional (2.3 mg) or mature (1.4 mg) milk. The sialic acid content of milk follows a similar profile to that of gangliosides with the highest content during the first few days post partum followed by a gradual decrease towards the end of the period studied. When the individual distribution of gangliosides was examined throughout the course of lactation, several changes were also found. GD3 is the major ganglioside (about 60-70%) found; its content decreases from the first to the fifth day, increasing towards the end of the period considered. GM3, GD3 and GT3, sialyllactosylceramide-containing gangliosides account for 80-90% of the total lipid-bound NeuAc content. The most striking change in the ganglioside pattern was the gradual increase in G3.  相似文献   

19.
The developmental profiles of the four major brain gangliosides, GM1, GD1a, GD1b, and GT1b, were examined in human frontal lobe covering the period from 10 fetal weeks to 80 years of age. The ganglioside concentration increased approx. 3-fold from the 10th gestational week to the age of about 5 years. Gangliosides GM1 and GD1a increased 12-15-fold during the same period. The most rapid increase of GM1 and GD1a occurred around term, during the period for dendrite arborization, outgrowth of axons and synaptogenesis. GT1b showed a quite different developmental curve. It was the major ganglioside during the 3rd to 5th gestational month, whereafter its concentration dropped rapidly to term, from which time the concentration then increased up to 50 years of age. Similar curves were found for the other gangliosides of the b-series, GD3, GD2, GD1b and GQ1b. Ganglioside 3'-isoLM1 was a characteristic early fetal ganglioside which dropped rapidly to the 5th gestational month, reached a small peak around term and then disappeared during adulthood. The concentration of gangliosides of the neolacto series was larger than that of the lacto series during the whole developmental period. In the beginning of the second trimester, 3'-LM1 constituted 2% and LD1 10% of total ganglioside sialic acid. The new findings demonstrate more dynamic changes of the ganglioside patterns during development than noted in previous studies.  相似文献   

20.
The concentration of gangliosides in the Snell dwarf mouse cerebrum was monitored from postnatal day 5 to day 40. In the dwarf cerebrum, the concentration of total gangliosides increased up to postnatal day 20 and then stopped, whereas in the control cerebrum, it continued to increase up to postnatal day 40. At postnatal day 40, the ganglioside level in the dwarf cerebrum was 70% of that in the control cerebrum. Among the ganglioside species, the concentrations of GM4, GM2, GM1, GD1a, GD3, GD1b, GT1b, and GQ1b were significantly lower in the dwarf cerebrum than in the controls at postnatal day 40. The reduced concentrations of ganglioside species GM2, GD1a, GD3, GD1b, and GQ1b were completely restored by administration of bovine growth hormone (GH) during the first 20 days of postnatal life. The reduced concentration of the GM1 and GM4 species were most efficiently restored by administration of bovine GH plus thyroxine (T4) during the second 20 days of postnatal life. These results indicate that the lower ganglioside concentrations in the dwarf cerebrum can be elevated by hormone therapy and that there exist distinct GH and T4 actions on the enzymes participating in ganglioside metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号