首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The quaking viable (qkv) mice have uncompacted myelin in their central and peripheral nervous system (CNS, PNS). The qk gene encodes 3 major alternatively spliced isoforms that contain unique sequence at their C-terminus dictating their cellular localization. QKI-5 is a nuclear isoform, whereas QKI-6 and QKI-7 are cytoplasmic isoforms. The qkv mice harbor an enhancer/promoter deletion that prevents the expression of isoforms QKI-6 and QKI-7 in myelinating cells resulting in a dysmyelination phenotype. It was shown that QKI regulates the differentiation of oligodendrocytes, the myelinating cells of the CNS, however, little is known about the role of the QKI proteins, or RNA binding proteins in PNS myelination.

Methodology/Principal Findings

To define the role of the QKI proteins in PNS myelination, we ectopically expressed QKI-6 and QKI-7 in primary rat Schwann cell/neuron from dorsal root ganglia cocultures. We show that the QKI isoforms blocked proliferation and promoted Schwann cell differentiation and myelination. In addition, these events were coordinated with elevated proteins levels of p27KIP1 and myelin basic protein (MBP), markers of Schwann cell differentiation. QKI-6 and QKI-7 expressing co-cultures contained myelinated fibers that had directionality and contained significantly thicker myelin, as assessed by electron microscopy. Moreover, QKI-deficient Schwann cells had reduced levels of MBP, p27KIP1 and Krox-20 mRNAs, as assessed by quantitative RT-PCR.

Conclusions/Significance

Our findings suggest that the QKI-6 and QKI-7 RNA binding proteins are positive regulators of PNS myelination and show that the QKI RNA binding proteins play a key role in Schwann cell differentiation and myelination.  相似文献   

2.
The quaking (qkI) gene encodes 3 major alternatively spliced isoforms that contain unique sequences at their C termini dictating their cellular localization. QKI-5 is predominantly nuclear, whereas QKI-6 is distributed throughout the cell and QKI-7 is cytoplasmic. The QKI isoforms are sequence-specific RNA binding proteins expressed mainly in glial cells modulating RNA splicing, export, and stability. Herein, we identify a new role for the QKI proteins in the regulation of microRNA (miRNA) processing. We observed that small interfering RNA (siRNA)-mediated QKI depletion of U343 glioblastoma cells leads to a robust increase in miR-7 expression. The processing from primary to mature miR-7 was inhibited in the presence QKI-5 and QKI-6 but not QKI-7, suggesting that the nuclear localization plays an important role in the regulation of miR-7 expression. The primary miR-7-1 was bound by the QKI isoforms in a QKI response element (QRE)-specific manner. We observed that the pri-miR-7-1 RNA was tightly bound to Drosha in the presence of the QKI isoforms, and this association was not observed in siRNA-mediated QKI or Drosha-depleted U343 glioblastoma cells. Moreover, the presence of the QKI isoforms led to an increase presence of pri-miR-7 in nuclear foci, suggesting that pri-miR-7-1 is retained in the nucleus by the QKI isoforms. miR-7 is known to target the epidermal growth factor (EGF) receptor (EGFR) 3′ untranslated region (3′-UTR), and indeed, QKI-deficient U343 cells had reduced EGFR expression and decreased ERK activation in response to EGF. Elevated levels of miR-7 are associated with cell cycle arrest, and it was observed that QKI-deficient U343 that harbor elevated levels of miR-7 exhibited defects in cell proliferation that were partially rescued by the addition of a miR-7 inhibitor. These findings suggest that the QKI isoforms regulate glial cell function and proliferation by regulating the processing of certain miRNAs.  相似文献   

3.
4.
The quaking viable (qkv) mice represent an animal model of dysmyelination. The absence of expression of the QKI-6 and QKI-7 cytoplasmic isoforms in oligodendrocytes (OLs) during CNS myelination causes the qkv mouse phenotype. The QKI RNA-binding proteins are known to regulate RNA metabolism of cell cycle proteins and myelin components in OLs; however, little is known of their role in reorganizing the cytoskeleton or process outgrowth during OL maturation and differentiation. Here, we identify the actin-interacting protein (AIP)-1 mRNA as a target of QKI-6 by using two-dimensional differential gel electrophoresis. The AIP-1 mRNA contains a consensus QKI response element within its 3′-untranslated region that, when bound by QKI-6, decreases the half-life of the AIP-1 mRNA. Although the expression of QKI-6 is known to increase during OL differentiation and CNS myelination, we show that this increase is paralleled with a corresponding decrease in AIP-1 expression in rat brains. Furthermore, qkv/qkv mice that lack QKI-6 and QKI-7 within its OLs had an increased level of AIP-1 in OLs. Moreover, primary rat OL precursors harboring an AIP-1 small interfering RNA display defects in OL process outgrowth. Our findings suggest that the QKI RNA-binding proteins regulate OL differentiation by modulating the expression of AIP-1.  相似文献   

5.
Multiple alleles of the quaking (qk) gene have a variety of phenotypes ranging in severity from early embryonic death to viable dysmyelination. A previous study identified a candidate gene, QKI, that contains an RNA-binding domain and encodes at least three protein isoforms (QKI-5, -6 and -7). We have determined the genomic structure of QKI, identifying an additional alternative end in cDNAs. Further we have examined the exons and splice sites for mutations in the lethal alleles qkl-1, qkkt1, qkk2, and qkkt3. The mutation in qkl-1 creates a splice site in the terminal exon of the QKI-6 isoform. Missense mutations in the KH domain and the QUA1 domains in qkk2 and qkkt3, respectively, indicate that these domains are of critical functional importance. Although homozygotes for each ENU induced allele die as embryos, their phenotypes as viable compound heterozygotes with qkv differ. Compound heterozygous qkv animals carrying qkkt1, qkk2, and qkkt3 all exhibit a permanent quaking phenotype similar to that of qkv/qkv animals, whereas qkv/qkl-1 animals exhibit only a transient quaking phenotype. The qkl-1 mutation eliminates the QKI-5 isoform, showing that this isoform plays a crucial role in embryonic survival. The transient quaking phenotype observed in qkv/qkl-1 mice indicates that the QKI-6 and QKI-7 isoforms function primarily during myelination, but that QKI-5 may have a concentration-dependent role in early myelination. This mutational analysis demonstrates the power of series of alleles to examine the function of complex loci and suggests that additional mutant alleles of quaking could reveal additional functions of this complex gene.  相似文献   

6.
The timing of oligodendrocyte development is regulated by thyroid hormone (TH) in vitro and in vivo, but it is still uncertain which TH receptors mediate this regulation. TH acts through nuclear receptors that are encoded by two genes, TRalpha and TRbeta. Here, we provide direct evidence for the involvement of the TRalpha1 receptor isoform in vivo, by showing that the number of oligodendrocytes in the postnatal day 7 (P7) and P14 optic nerve of TRalpha1-/- mice is decreased compared with normal. We demonstrate that TRalpha1 mediates the normal differentiation-promoting effect of TH on oligodendrocyte precursor cells (OPCs): unlike wild-type OPCs, postnatal TRalpha1-/- OPCs fail to stop dividing and differentiate in response to TH in culture. We also show that overexpression of TRalpha1 accelerates oligodendrocyte differentiation in culture, suggesting that the level of TRalpha1 expression is normally limiting for TH-dependent OPC differentiation. Finally, we provide evidence that the inhibitory isoforms of TRalpha are unlikely to play a part in the timing of OPC differentiation.  相似文献   

7.
8.

Background

The quaking viable (qkv) mouse has several developmental defects that result in rapid tremors in the hind limbs. The qkI gene expresses three major alternatively spliced mRNAs (5, 6 and 7 kb) that encode the QKI-5, QKI-6 and QKI-7 RNA binding proteins that differ in their C-terminal 30 amino acids. The QKI isoforms are known to regulate RNA metabolism within oligodendrocytes, however, little is known about their roles during cellular stress.

Methodology/Principal Findings

In this study, we report an interaction between the QKI-6 isoform and a component of the RNA induced silencing complex (RISC), argonaute 2 (Ago2). We show in glial cells that QKI-6 co-localizes with Ago2 and the myelin basic protein mRNA in cytoplasmic stress granules.

Conclusions

Our findings define the QKI isoforms as Ago2-interacting proteins. We also identify the QKI-6 isoform as a new component of stress granules in glial cells.  相似文献   

9.
10.
11.
12.
13.

Background

The human QKI gene, called quaking homolog, KH domain RNA binding (mouse), is a candidate gene for schizophrenia encoding an RNA-binding protein. This gene was shown to be essential for myelination in oligodendrocytes. QKI is also highly expressed in astrocytes, but its function in these cells is not known.

Methods/Principal Findings

We studied the effect of small interference RNA (siRNA)-mediated QKI depletion on global gene expression in human astrocyte glioma cells. Microarray measurements were confirmed with real-time quantitative polymerase chain reaction (qPCR). The presence of QKI binding sites (QRE) was assessed by a bioinformatic approach. Viability and cell morphology were also studied. The most significant alteration after QKI silencing was the decreased expression of genes involved in interferon (IFN) induction (P = 6.3E-10), including IFIT1, IFIT2, MX1, MX2, G1P2, G1P3, GBP1 and IFIH1. All eight genes were down-regulated after silencing of the splice variant QKI-7, but were not affected by QKI-5 silencing. Interestingly, four of them were up-regulated after treatment with the antipsychotic agent haloperidol that also resulted in increased QKI-7 mRNA levels.

Conclusions/Significance

The coordinated expression of QKI-7 splice variant and IFN-related genes supports the idea that this particular splice variant has specific functions in astrocytes. Furthermore, a role of QKI-7 as a regulator of an inflammatory gene pathway in astrocytes is suggested. This hypothesis is well in line with growing experimental evidence on the role of inflammatory components in schizophrenia.  相似文献   

14.
We investigated the expression of metabotropic glutamate receptor (mGluR) isoforms in CG-4 rodent oligodendroglial progenitor cells (OPC) and rat brain oligodendrocytes. Our RT-PCR analysis detected mRNAs for mGluR3 and mGluR5 isoforms in OPCs. Although neurons express both mGluR5a and mGluR5b splice variants, only mGluR5a was identified in OPCs. Antibodies to mGluR2/3 and mGluR5 detected the corresponding receptor proteins in immunoblots of OPC membrane fractions. Furthermore, immunocytochemical analysis identified mGluR5 in oligodendrocyte marker O4-positive OPCs. The expression of mGluR5 was also demonstrated in oligodendrocyte marker (O4 and O1) positive cells in white matter of postnatal 4- and 7-day-old rat brain sections using immunofluorescent double labelling and confocal microscopy. The mGluR5 receptor function was assessed in CG-4 OPCs with fura-2 microfluorometry. Application of the mGluR1/5 specific agonist (S)-3,5-dihydroxyphenylglycine (DHPG) induced calcium oscillations, which were inhibited by the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). The DHPG induced calcium oscillations required Ca2+ release from intracellular stores. In OPCs the group II mGluR agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) decreased forskolin-stimulated cAMP synthesis, indicating the presence of functional mGluR3. The newly identified mGluR3 and mGluR5a may be involved in the differentiation of oligodendrocytes, myelination and the development of white matter damage.  相似文献   

15.
Tightly controlled termination of proliferation determines when oligodendrocyte progenitor cells (OPCs) can initiate differentiation and mature into myelin-forming cells. Protein-tyrosine phosphatase α (PTPα) promotes OPC differentiation, but its role in proliferation is unknown. Here we report that loss of PTPα enhanced in vitro proliferation and survival and decreased cell cycle exit and growth factor dependence of OPCs but not neural stem/progenitor cells. PTPα(-/-) mice have more oligodendrocyte lineage cells in embryonic forebrain and delayed OPC maturation. On the molecular level, PTPα-deficient mouse OPCs and rat CG4 cells have decreased Fyn and increased Ras, Cdc42, Rac1, and Rho activities, and reduced expression of the Cdk inhibitor p27Kip1. Moreover, Fyn was required to suppress Ras and Rho and for p27Kip1 accumulation, and Rho inhibition in PTPα-deficient cells restored expression of p27Kip1. We propose that PTPα-Fyn signaling negatively regulates OPC proliferation by down-regulating Ras and Rho, leading to p27Kip1 accumulation and cell cycle exit. Thus, PTPα acts in OPCs to limit self-renewal and facilitate differentiation.  相似文献   

16.
We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time. Additionally, OPC migration was examined in vitro using time-lapse imaging of cultured OPCs. Our results indicated that OPCs migrate to a greater extent after stimulated microgravity than in normal conditions, and this enhanced motility was associated with OPC morphological changes. The lack of normal gravity resulted in a significant increase in the migration speed of mouse and human OPCs and we found that the average leading process in migrating bipolar OPCs was significantly longer in microgravity treated cells than in controls, demonstrating that during OPC migration the lack of gravity promotes leading process extension, an essential step in the process of OPC migration. Finally, we tested the effect of simulated microgravity on OPC differentiation. Our data showed that the expression of mature oligodendrocyte markers was significantly delayed in microgravity treated OPCs. Under conditions where OPCs were allowed to progress in the lineage, simulated microgravity decreased the proportion of cells that expressed mature markers, such as CC1 and MBP, with a concomitant increased number of cells that retained immature oligodendrocyte markers such as Sox2 and NG2. Development of methodologies aimed at enhancing the number of OPCs and their ability to progress on the oligodendrocyte lineage is of great value for treatment of demyelinating disorders. To our knowledge, this is the first report on the gravitational modulation of oligodendrocyte intrinsic plasticity to increase their progenies.  相似文献   

17.
18.
19.
Myelin in the mammalian central nervous system (CNS) is produced by oligodendrocytes, most of which arise from oligodendrocyte precursor cells (OPCs) during late embryonic and early postnatal development. Both external and internal cues have been implicated in regulating OPC exit from the cell cycle and differentiation into oligodendrocytes. In this study, we demonstrate that differentiation of cultured OPCs into mature oligodendrocytes is associated with lower levels of activity of telomerase, the ribonucleoprotein that synthesizes telomeric DNA at the ends of chromosomes. Differentiation is also associated with lower levels of mRNA encoding the catalytic subunit of telomerase (TERT), whereas no difference is seen in the expression of its telomeric template RNA component (TR). These data suggest a possible role for telomerase during normal growth and differentiation of oligodendrocytes that may be relevant to the mechanism of myelination in the CNS.  相似文献   

20.
GABA(B) receptors (GABA(B)Rs) are involved in early events during neuronal development. The presence of GABA(B)Rs in developing oligodendrocytes has not been established. Using immunofluorescent co-localization, we have identified GABA(B)R proteins in O4 marker-positive oligodendrocyte precursor cells (OPCs) in 4-day-old mouse brain periventricular white matter. In culture, OPCs, differentiated oligodendrocytes (DOs) and type 2 astrocytes (ASTs) express both the GABA(B1abcdf) and GABA(B2) subunits of the GABA(B)R. Using semiquantitative PCR analysis with GABA(B)R isoform-selective primers we found that the expression level of GABA(B1abd) was substantially higher in OPCs or ASTs than in DOs. In contrast, the GABA(B2) isoform showed a similar level of expression in OPCs and DOs, and a significantly higher level in ASTs. This indicates that the expression of GABA(B1) and GABA(B2) subunits are under independent control during oligodendroglial development. Activation of GABA(B)Rs using the selective agonist baclofen demonstrated that these receptors are functionally active and negatively coupled to adenylyl cyclase. Manipulation of GABA(B)R activity had no effect on OPC migration in a conventional agarose drop assay, whereas baclofen significantly increased OPC migration in a more sensitive transwell microchamber-based assay. Exposure of cultured OPCs to baclofen increased their proliferation, providing evidence for a functional role of GABA(B)Rs in oligodendrocyte development. The presence of GABA(B)Rs in developing oligodendrocytes provides a new mechanism for neuronal-glial interactions during development and may offer a novel target for promoting remyelination following white matter injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号