首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic ligation of one pulmonary artery results in pulmonary vascular remodeling and bronchial angiogenesis, collectively known as postobstructive pulmonary vasculopathy (POPV). To investigate pulmonary vascular reactivity in POPV, we ligated the left main pulmonary artery of guinea pigs and, after 1-10 mo, prepared explants by inflating lungs with agarose and sectioning them into approximately 1-mm-thick slices; we measured areas of pulmonary vessels and determined contractile responses to histamine and serotonin (5-HT) and relaxant responses to ACh and sodium nitroprusside. We found maximal contractions of arteries to 5-HT (24. 4 +/- 2.6%) and of veins to histamine (53.9 +/- 4.7%) were significantly increased in POPV of 3-mo duration compared with those of controls (16.8 +/- 1.5 and 40.8 +/- 5.0%, respectively). Relaxation of arteries with ACh was enhanced at 10 mo but not at 1 mo after ligation. Relaxation with sodium nitroprusside was increased in veins at 1 mo after ligation but was not altered in arteries. Morphometry revealed reduced diameters of arteries and veins without increased medial thickness. Our data suggest that the enhanced contractile responses of pulmonary vessels to histamine and 5-HT in POPV were not a result of endothelial dysfunction or of structural alterations but might be caused by as-yet-undiscovered mechanisms.  相似文献   

2.
Postobstructive pulmonary vasculopathy, produced by chronic ligation of one pulmonary artery, markedly increases bronchial blood flow. Previously, using arterial and venous occlusion, we determined that bronchial collaterals enter the pulmonary circuit at the distal end of the arterial segment. In this study, we tested the hypothesis that pressure in bronchial collaterals (Pbr) closely approximates that at the downstream end of the arterial segment (Pao). We pump perfused [111 +/- 10 (SE) ml/min] left lower lobes of seven open-chest live dogs 3-15 mo after ligation of the left main pulmonary artery. Bronchial blood flow was 122 +/- 16 ml/min. We measured pulmonary arterial and venous pressures and, by arterial and venous occlusion, respectively, Pao and the pressure at the upstream end of the venous segment (Pvo). Pbr was obtained by micropuncture of 34 pleural surface bronchial vessels 201 +/- 16 microns in diameter. We found that Pbr (14.4 +/- 1.0 mmHg) was similar to Pao (15.0 +/- 0.8 mmHg) but differed significantly (P < 0.01) from Pvo (11.3 +/- 0.5 mmHg). In addition, Pbr was independent of systemic arterial pressure and bronchial vessel diameter. Light and electron microscopy revealed that, in the lobes with the ligated pulmonary artery, the new bronchial collaterals entered the thickened pleura from the parenchyma via either bronchovascular bundles or interlobular septa and had sparsely muscularized walls. We conclude that, in postobstructive pulmonary vasculopathy, bronchial collateral pressure measured by micropuncture is very close to the pressure in precapillary pulmonary arteries and that most of the pressure drop in the bronchial collaterals occurs in vessels > 350 microns in diameter.  相似文献   

3.
Occlusion pressures vs. micropipette pressures in the pulmonary circulation   总被引:2,自引:0,他引:2  
Because of the discrepancies between the arterial and venous occlusion technique and the micropuncture technique in estimating pulmonary capillary pressure gradient, we compared measurements made with the two techniques in the same preparations (isolated left lower lobe of dog lung). In addition, we also obtained direct and reliable measurements of pressures in 0.9-mm arteries and veins using a retrograde catheterization technique, as well as a microvascular pressure made with the double-occlusion technique. The following conclusions were made from dog lobes perfused with autologous blood at normal flow rate of 500-600 ml/min and pressure gradient of 12 mmHg. 1) The double-occlusion technique measures pressure in the capillaries, 2) a small pressure gradient (0.5 mmHg) exists between 30- to 50-micron arteries and veins, 3) a large pressure gradient occurs in arteries and veins greater than 0.9 mm, 4) the arterial and venous occlusion techniques measure pressures in vessels that are less than 900 microns diam but greater than 50 microns, very likely close to 100 microns, 5) serotonin constricts arteries (larger and smaller than 0.9 mm) whereas histamine constricts veins (larger and smaller than 0.9 mm). Thus three different techniques (small retrograde catheter, arterial and venous occlusion, and micropuncture) show consistent results, confirming the presence of significant resistance in large arteries and veins with minimal resistance in the microcirculation.  相似文献   

4.
Architectonics and ultrastructure of the arterial blood vessels of the frog submaxillary muscle are described. Intramuscular arterial vessels 100 divided by 8 micron in diameter have a single layer of smooth muscle cells (SMC), while SMC themselves look simplified and undifferentiated. The contacts between SMC in arterial vessels of all the sizes and myoendothelial contacts in the vessels 80-8 microns in diameter are noted. In the resting muscle, the arterial vessels of all the sizes show spontaneous changes in the diameter. During muscular contraction, the time course of the dilatation of different vessels is different, which is likely to be caused by vasomotion phase differences seen immediately before the contraction.  相似文献   

5.
Using an X-ray TV system, we analyzed responses in the internal diameter (ID), flow velocity, and volume flow in small pulmonary vessels (100-600 microns ID) during unilobar hypoxia and hypercapnia in cats. In the hypoxic and hypercapnic lobes, the ID reduced in proportion to the degree of hypoxia and hypercapnia, respectively. The ID reduction was larger in the arteries than in the veins for a given stimulus. In the arteries, the ID reduced nonuniformly in the series-arranged vessels in response to both stimuli. The percentage ID reduction was maximal in the arteries of 200-300 microns ID, in which it was 21, 26, 28, and 36% with 5% O2, 0% O2, 5% CO2, and 10% CO2 inhalations, respectively. On the other hand, in the veins, uniform ID reduction occurred for a given stimulus. In the contralateral normoxic lobe, the ID did not change significantly. In both hypoxic and hypercapnic lobes, the flow velocity and volume flow of the small arteries decreased, with 5% O2, by 18 and 40%, respectively, and, with 5% CO2, by 23 and 50%, respectively. In contrast, in the normoxic lobe, they increased significantly during 5% O2 and 5% CO2 inhalations. We concluded that regional alveolar hypoxia and hypercapnia induced a local vasoconstriction particularly in the small arteries of 200-300 microns ID and decreased the flow velocity and volume flow in the same lung region.  相似文献   

6.
The effects of PGA1 and PGA2 were studied in the canine pulmonary vascular bed. Infusion of PGA1 into the lobar artery decreased lobar arterial and venous pressure but did not change left atrial pressure. In contrast, PGA2 infusion increased lobar arterial and venous pressure and the effects of this substance were similar in experiments in which the lung was perfused with dextran or with blood. These data indicate that under conditions of controlled blood flow PGA1 decreases pulmonary vascular resistance by dilating intrapulmonary veins and to a lesser extent vessels upstream to the small veins, presumably small arteries. The present data show that PGA2 increases pulmonary vascular resistance by constricting intrapulmonary veins and upstream vessels. The predominant effect of PGA2 was on upstream vessels and the pressor effect was not due to interaction with formed elements in the blood or platelet aggregation.  相似文献   

7.
The ultrastructure of portions of the arterial and venous systems of the 11.5 day old Wistar rat embryos has been studied by scanning and transmission electron microscopy. The vessels at this stage of development are in the form of capillaries, and the arterial and venous types can be distinguished by the morphology of the endothelial cells by SEM. The endothelial cells of the arterial vessels gave prominent nuclear bulges and numerous microvilli apart from their spindle shape, whilst those of the veins appear flattened, are polygonal in shape, and have few microvilli. Transmission electron microscopy shows that the endothelial cells of the arteries and veins are identical in structure. The ultrastructure of these cells resembles that of endothelial cells at later stages of development including the adult type in that mature forms of cytoplasmic organelles are obtained. In studies on the intercellular junctions and fenestrations with lanthanum nitrate, the impression is formed that the vessels at this stage are impermeable to small molecular size particles, compared with adult capillaries. This suggests that cytoplasmic vesicles must play a major role in the transport of macromolecules in the 11.5 day embryonic vessels.  相似文献   

8.
We have reported that left atrial blood refluxes through the pulmonary veins to gas-exchanging tissue after pulmonary artery ligation. This reverse pulmonary venous flow (Qrpv) was observed only when lung volume was changed by ventilation. This was believed to drive Qrpv by alternately distending and compressing the alveolar and extra-alveolar vessels. Because lung and pulmonary vascular compliances change with lung volume, we studied the effect of positive end-expiratory pressure (PEEP) on the magnitude of Qrpv during constant-volume ventilation. In prone anesthetized goats (n = 8), using the right lung to maintain normal blood gases, we ligated the pulmonary and bronchial arterial inflow to the left lung and ventilated each lung separately. A solution of SF6, an inert gas, was infused into the left atrium. SF6 clearance from the left lung was determined by the Fick principle at 0, 5, 10, and 15 and again at 0 cmH2O PEEP and was used to measure Qrpv. Left atrial pressure remained nearly constant at 20 cmH2O because the increasing levels of PEEP were applied to the left lung only. Qrpv was three- to fourfold greater at 10 and 15 than at 0 cmH2O PEEP. At these higher levels of PEEP, there were greater excursions in alveolar pressure for the same ventilatory volume. We believe that larger excursions in transpulmonary pressure during tidal ventilation at higher levels of PEEP, which compressed alveolar vessels, resulted in the reflux of greater volumes of left atrial blood, through relatively noncompliant extra-alveolar veins into alveolar corner vessels, and more compliant extra-alveolar arteries.  相似文献   

9.
Calcitonin gene-related peptide vasodilation of human pulmonary vessels   总被引:3,自引:0,他引:3  
Human calcitonin gene-related peptide (CGRP) is localized to sensory neurons in pulmonary vessels and is a potent vasodilator. We have characterized the effects of CGRP in human pulmonary vessels and localized the receptors for this peptide by autoradiography. Fresh human lung tissue was obtained from eight patients undergoing surgery and small (200-400 microns ID) pulmonary arteries and veins were dissected free of surrounding connective and pulmonary tissue. Pairs of vessels were studied and in one of each pair the endothelium was left intact and from the other of each pair the endothelium was removed by gentle abrasion. For functional studies arteries (n = 9) and veins (n = 9) were suspended in an organ bath, precontracted with 1 microM prostaglandin F2 alpha. CGRP (10 pM to 10 microM) was added in a cumulative manner. CGRP caused a dose-dependent relaxation of endothelium intact human pulmonary arteries and veins with log EC50 values of -8.01 +/- 0.35 and -8.70 +/- 0.40, respectively (not significant). Removal of the endothelium did not diminish the vasodilator potency of CGRP in either vessel. For autoradiographic studies, cryostat sections of the small human pulmonary vessels with or without endothelium were used. 125I-CGRP densely labeled CGRP receptors on vascular smooth muscle and endothelial removal did not have any effect on grain density. We concluded that CGRP is a potent vasodilator of human pulmonary arteries and veins that is not dependent on an intact endothelium. These functional studies correlate with the distribution of CGRP receptors as localized by autoradiography.  相似文献   

10.
The lobular division, bronchial tree, and blood vessels in lungs of seven squirrel monkeys (Saimiri sciureus) were examined from the viewpoint of comparative anatomy. The right lung of the squirrel monkey consists of the upper, middle, lower, and accessory lobes, whereas the left lung consists of the upper, middle, and lower lobes. These lobes are completely separated by interlobular fissures. In three of seven examples examined the left middle lobe was lacking. The squirrel monkey lung has four bronchiole systems, i.e. dorsal, lateral, ventral, and medial, on both sides. The upper lobes are formed by the first branches of the dorsal bronchiole systems. The middle lobes are formed by the first branches of the lateral bronchiole systems. The remaining bronchioles constitute the lower lobes. In addition to the above lobes, in the right lung, the accessory lobe is present, being formed by the first branch of the ventral bronchiole system. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then across the dorsal side of the right middle lobe bronchiole. Thereafter, it runs between the dorsal bronchiole and lateral bronchiole systems along the dorso-lateral side of the right bronchus. During its course, the right pulmonary artery gives off the arterial branches which run along each bronchiole. These branches run mainly along the dorsal or lateral side of the bronchioles. In the left lung, the pulmonary artery and its branches run the same course as in the right lung. The pulmonary veins run mainly the ventral or medial side of the bronchioles, and between the bronchioles.  相似文献   

11.
The effects of four F series prostaglandins on the pulmonary vascular bed were compared under conditions of controlled pulmonary blood flow in the intact spontaneously breathing dog. PGF1alpha and PGF2alpha increased lobar arterial pressure whereas PGF1beta and PGF2beta had little if any effect when infused into the lobar artery. The increase in lobar arterial pressure in response to PGF1alpha and PGF2alpha was associated with a significant increase in lobar venous pressure but no change in left atrial pressure. These data indicate that PGF1alpha and PGF2alpha increase pulmonary vascular resistance by constricting lobar veins and vessels upstream to small veins, presumed to be small arteries. It is concluded that in the pulmonary vascular bed the configuration of the hydroxyl group at carbon 9 is an important determinant of pressor activity.  相似文献   

12.
The pulmonary vascular bed was embolized with glass beads in small doses that induced no significant changes in pulmonary arterial pressure in anesthetized cats. We analyzed changes in internal diameter (ID), flow velocity, and volume flow of embolized and nonembolized arteries simultaneously with ID changes of small veins. In embolized arteries, with 180-, 300-, and 500-microns beads, ID constricted maximally in just proximal portions of the plug by 22, 23, and 17%, respectively, but with 840-microns beads, no ID constriction occurred. With 50-microns beads, the maximum ID constriction occurred in arteries of 200-300 microns but not in those of 100-200 microns. The constriction decreased in the upstream larger arteries and disappeared in those greater than 800 microns ID. In the nonembolized arteries no ID change occurred. Veins constricted slightly compared with arteries. By heparin pretreatment, ID constriction was slightly attenuated in arteries and was almost abolished in veins, whereas it was not affected with hexamethonium bromide. At a branching site, volume flow to an embolized artery decreased because of a decrease in ID and flow velocity, whereas volume flow to a nonembolized artery increased because of an increase in flow velocity. We concluded that pulmonary microembolization induced a vasoconstriction chiefly in small pulmonary arteries upstream to the plug. After embolization, blood flow was locally redistributed from an embolized to a nonembolized artery at a branching site. Arterial vasoconstriction may be mediated chiefly by local mechanical factors.  相似文献   

13.
A hemodynamic model representation of the dog lung   总被引:2,自引:0,他引:2  
The published morphometric data from human, cat, and dog lungs suggest that the power-law relationships between the numbers (Na and Nv) and diameters (Da and Dv) of arteries and veins and between the lengths (La and Lv) and diameters of the arteries and veins could be used as scaling rules for assigning dimensions and numbers to the intrapulmonary vessels of the arterial and venous trees of the dog lung. These rules, along with the dimensions of the extrapulmonary arteries and capillary sheet and the distensibility coefficients of the vessels obtained from the literature, were used to construct a steady-state hemodynamic model of the dog lung vascular bed. The model can be characterized approximately by 15 orders of arteries with Na approximately 2.07 Da-2.58 and 13 orders of veins with Nv approximately 2.53 Dv-2.61. For the intrapulmonary vessels (orders 1-12), La approximately 4.85 Da1.01, and Lv approximately 6.02 Da1.07. The average ratio of the numbers of vessels in consecutive orders is approximately 3.2 for the arteries and veins. These arterial and venous trees are connected by the capillary sheet with an undistended thickness of approximately 3.5 microns and an area of 33 m2. The average distensibility (% increase in diameter over the undistended diameter/Torr increase in transmural pressure) for the model arteries and veins is approximately 2.4%/Torr, and the distensibility of the capillary sheet (% increase in thickness over the undistended thickness/Torr increase in transmural pressure) is approximately 3.6%/Torr. The calculated arterial-capillary-venous volumes and compliances of the model agree well with experimental estimates of these variables in dogs. In addition, the model appears consistent with certain aspects of the pressure-flow relationships measured in dog lungs. The model appears to be a useful summary of some of the available data on pulmonary morphometry and vessel properties. It is anticipated that the model will provide the basis for dynamic modeling of the dog lung in the future.  相似文献   

14.
Studies in animal models have shown that, following lobectomy (LBX), there is compensatory growth in the remaining lung. The vascular growth response following right LBX (R-LBX) is poorly understood. To test the hypothesis that arterial growth and remodeling occur in response to LBX, in proportion to the amount of right lung tissue removed, two (24% of lung mass; R-LBX2 group) or three right lobes (52% of lung mass; R-LBX3 group) were removed via thoracotomy from adult rats. Sham control animals underwent thoracotomy only. Arteriograms were generated 3 wk after surgery. The areas of the left lung arteriogram, arterial branching, length of arterial branches, arterial density, and arterial-to-alveolar ratios were measured. To determine whether R-LBX causes vascular remodeling and pulmonary hypertension, muscularization of arterioles and right ventricular hypertrophy were assessed. Lung weight and volume indexes were greater in R-LBX3. Arterial area of the left lung increased 26% in R-LBX2 and 47% in R-LBX3. The length of large arteries increased in R-LBX3 and to a lesser extent in R-LBX2. The ratio of distal pulmonary arteries to alveoli was similar after R-LBX2 compared with sham but was 30% lower in R-LBX3. Muscularization of arterioles increased after R-LBX3, but not in R-LBX2. Right ventricular hypertrophy increased 50-70% in R-LBX3, but not in R-LBX2. Whereas removal of three right lung lobes induced arterial growth in the left lungs of adult rats, which was proportionate to the number of lobes removed, the ratio of distal pulmonary arteries to alveoli was not normal, and vascular remodeling and pulmonary hypertension developed.  相似文献   

15.
Saphenous veins used as arterial grafts are exposed to arterial levels of oxygen partial pressure (pO2), which are much greater than what they experience in their native environment. The object of this study is to determine the impact of exposing human saphenous veins to arterial pO2. Saphenous veins and left internal mammary arteries from consenting patients undergoing coronary artery bypass grafting were cultured ex vivo for 2 weeks in the presence of arterial or venous pO2 using an established organ culture model. Saphenous veins cultured with arterial pO2 developed intimal hyperplasia as evidenced by 2.8-fold greater intimal area and 5.8-fold increase in cell proliferation compared to those freshly isolated. Saphenous veins cultured at venous pO2 or internal mammary arteries cultured at arterial pO2 did not develop intimal hyperplasia. Intimal hyperplasia was accompanied by two markers of elevated reactive oxygen species (ROS): increased dihydroethidium associated fluorescence (4-fold, p<0.05) and increased levels of the lipid peroxidation product, 4-hydroxynonenal (10-fold, p<0.05). A functional role of the increased ROS saphenous veins exposed to arterial pO2 is suggested by the observation that chronic exposure to tiron, a ROS scavenger, during the two-week culture period, blocked intimal hyperplasia. Electron paramagnetic resonance based oximetry revealed that the pO2 in the wall of the vessel tracked that of the atmosphere with a ~30 mmHg offset, thus the cells in the vessel wall were directly exposed to variations in pO2. Monolayer cultures of smooth muscle cells isolated from saphenous veins exhibited increased proliferation when exposed to arterial pO2 relative to those cultured at venous pO2. This increased proliferation was blocked by tiron. Taken together, these data suggest that exposure of human SV to arterial pO2 stimulates IH via a ROS-dependent pathway.  相似文献   

16.
The author injected various colored celluloid solutions into the bronchial tree and blood vessels of the lungs of five adult Japanese monkeys (Macaca fuscata) in order to prepare cast specimens. These specimens were investigated from the comparative anatomical viewpoint to determine whether the bronchial ramification theory of the mammalian lung (Nakakuki, 1975, 1980) can be applied to the Japanese monkey lung or not. The bronchioles are arranged stereotaxically like those of other mammalian lungs. The four bronchiole systems, dorsal, ventral, medial, and lateral, arise from both bronchi, respectively, although some bronchioles are lacking. In the right lung, the bronchioles form the upper, middle, accessory, and lower lobes, while in the left lung, the upper and accessory lobes are lacking and bi-lobed middle and lower lobes are formed. In the right lung, the upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is the first branch of the lateral bronchiole system. The accessory lobe is the first branch of the ventral bronchiole system. The lower lobe is formed by the remaining bronchioles of the four bronchiole systems. In the left lung, the middle lobe is formed by the first branch of the lateral bronchiole system. The lower lobe is formed by the remaining bronchioles. Thus, the bronchial ramification theory of the mammalian lung applied well to the Japanese monkey lung. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole. It then runs along the dorso-lateral side of the right bronchus between the dorsal bronchiole system and the lateral bronchiole system. On its way, it gives off branches of the pulmonary artery which run along the dorsal or lateral side of each bronchiole except in the ventral bronchiole system. In the ventral bronchiole system, the branches run along the ventral side of the bronchioles. The distributions of the pulmonary artery in the left lung are the same as those in the right lung. The pulmonary veins do not always run along the bronchioles. Most of them run on the medial or ventral side of the bronchioles. Some of them run between the pulmonary segments. In the right lung, these pulmonary veins finally form the right upper lobe vein, right middle lobe vein and the right lower lobe pulmonary venous trunk before entering the left atrium. However, the right accessory lobe vein runs on the dorsal side of the bronchiole and pours into the right lower lobe pulmonary venous trunk. In four cases out of the five examples, part of the right lower lobe veins pour into the right middle lobe vein, while the others enter the right lower lobe pulmonary venous trunk. In the left lung, the branches of the pulmonary veins finally form the left middle lobe vein and the left lower lobe pulmonary venous trunk.  相似文献   

17.
Histological studies provide evidence that the bronchial veins are a site of leakage in histamine-induced pulmonary edema, but the physiological importance of this finding is not known. To determine if a lung perfused by only the bronchial arteries could develop pulmonary edema, we infused histamine for 2 h in anesthetized sheep with no pulmonary arterial blood flow to the right lung. In control sheep the postmortem extravascular lung water volume (EVLW) in both the right (occluded) and left (perfused) lung was 3.7 +/- 0.4 ml X g dry lung wt-1. Following histamine infusion, EVLW increased to 4.4 +/- 0.7 ml X g dry lung wt-1 in the right (occluded) lung (P less than 0.01) and to 5.3 +/- 1.0 ml X g dry wt-1 in the left (perfused) lung (P less than 0.01). Biopsies from the right (occluded) lungs scored for the presence of edema showed a significantly higher score in the lungs that received histamine (P less than 0.02). Some leakage from the pulmonary circulation of the right lung, perfused via anastomoses from the bronchial circulation, cannot be excluded but should be modest considering the low pressures in the pulmonary circulation following occlusion of the right pulmonary artery. These data show that perfusion via the pulmonary arteries is not a requirement for the production of histamine-induced pulmonary edema.  相似文献   

18.
In this study, we present a new approach for using the pressure vs. time data obtained after various vascular occlusion maneuvers in pump-perfused lungs to gain insight into the longitudinal distribution of vascular resistance with respect to vascular compliance. Occlusion data were obtained from isolated dog lung lobes under normal control conditions, during hypoxia, and during histamine or serotonin infusion. The data used in the analysis include the slope of the arterial pressure curve and the zero time intercept of the extrapolated venous pressure curve after venous occlusion, the equilibrium pressure after simultaneous occlusion of both the arterial inflow and venous outflow, and the area bounded by equilibrium pressure and the arterial pressure curve after arterial occlusion. We analyzed these data by use of a compartmental model in which the vascular bed is represented by three parallel compliances separated by two series resistances, and each of the three compliances and the two resistances can be identified. To interpret the model parameters, we view the large arteries and veins as mainly compliance vessels and the small arteries and veins as mainly resistance vessels. The capillary bed is viewed as having a high compliance, and any capillary resistance is included in the two series resistances. With this view in mind, the results are consistent with the major response to serotonin infusion being constriction of large and small arteries (a decrease in arterial compliance and an increase in arterial resistance), the major response to histamine infusion being constriction of small and large veins (an increase in venous resistance and a decrease in venous compliance), and the major response to hypoxia being constriction of the small arteries (an increase in arterial resistance). The results suggest that this approach may have utility for evaluation of the sites of action of pulmonary vasomotor stimuli.  相似文献   

19.
There are musculo-elastic intimal thickenings in the intramural coronary arteries of the Trabecula septomarginalis, which results in a stenosing grade of 69% in average in 6 month old pigs, of 43% in 1-6 months old pygmy goats and of 35% in average in 4-7 years old pygmy goats. The degree of intimal thickenings is related to the arterial diameter (r = -0.60); the strongest of which are found in small vessels of 100-200 microns. With increasing arterial diameter during ageing the stenoses decrease. The role of the intramural coronaries of the Trabecula septomarginalis is discussed.  相似文献   

20.
Until now, direct micropuncture measurements of vascular pressure in lung have been limited to small vessels less than 100 microns on the pleural surface. On the other hand, direct pressure measurements using small catheters (less than 1-mm OD) in pulmonary vessels have been limited to those greater than 1.2 mm. We measured pressure in intermediate-sized microvessels (300-700 microns) using the micropuncture method in isolated perfused rabbit lungs. These microvessels are located 2 or 3 mm beneath the pleura. We exposed them by microsurgery and punctured the relatively thick-walled vessels with specially configured micropipettes. We exposed one pulmonary microvessel in each rabbit lung by microsurgery on the left middle lobe. In 15 rabbit lungs we measured pressure in a total of six small arteries (275- to 470-microns diam) and nine small veins (300- to 700-microns diam) under high zone 3 conditions, near the zone 2/3 boundary. We found approximately 35% of the total pulmonary vascular pressure drop in arteries greater than 275-microns diam and 7% in veins greater than 300-microns diam. In veins greater than 500-microns diam, there was no measurable pressure drop. After the measurements, we froze the lung and confirmed that there was no detectable interstitial or alveolar edema in the cross sections of the punctured site. Our data are compatible with those of other investigators who have used isolated perfused rabbit lungs under similar experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号