首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A physical map of the unicellular cyanobacterium Synechococcus sp. strain PCC6301 genome has been constructed with restriction endonucleases PmeI, SwaI, and an intron-encoded endonuclease I-CeuI. The estimated size of the genome is 2.7 Mb. On the genome 49 genes or operons have been mapped. Two rRNA operons are separated by 600 kb and transcribed oppositely.  相似文献   

2.
Synechococcus PCC 6301 synthesized sucrose as a compatible solute following hyperosmotic shock induced by NaCl. Initial rates of photosynthetic 14C incorporation were reduced following salt shock. Photosynthetic rates were comparable in cells enriched for glycogen (by growth in NO 3 - -deficient medium) and cells grown in NO 3 - -sufficient medium in the absence of osmotic shock. Incorporation of 14C was predominantly into the NaOH fraction and the residual acidic fraction in cells grown in NO 3 - -sufficient medium, whereas incorporation was predominantly into the residual acidic fraction in cells grown in NO 3 - -deficient medium. Following salt stress, 14C incorporation was initially into the ethanol-soluble fraction and the majority of tracer was recovered in sucrose. Carbon-14 was detected in sucrose in cells which had been enriched for [14C]glycogen prior to salt stress, inferring that glycogen can act as a carbon source for sucrose synthesis following salt stress. Changes in the specific activity of sucrose are consistent with an initial synthesis of sucrose from glycogen followed by synthesis of sucrose using newly fixed carbon, in response to salt stress.This work was supported by the Agricultural and Food Research Council.  相似文献   

3.
Ahlert Schmidt 《Planta》1981,152(2):101-104
Fructose-1,6-bisphosphatase was isolated from the cyanobacterium Synechococcus 6301 by acid precipitation, ammonium-sulfate fractionation, and Sephadex gel chromatography. The purified enzyme needed thiols and MgCl2 for activity. The following Km-values were obtained: a) for fructose-1,6-bisphosphate: 1.7 mM; b) for MgCl2: 12.5 mM; c) for dithiocrythritol: 0,56 mM; d) for glutathione: 14 mM; e) for mercaptoethanol: 22 mM; f) for cysteine: 50 mM. Thioredoxin B isolated from this organism will activate this fructose-1,6-bisphosphatase. The Km of thioredoxin B for this fructose-1,6-bisphosphatase was determined to be 1.7 M, endicotiy that thioredoxin might activate the fructose-1,6-bisphosphatase in Synechococcus in vivo.  相似文献   

4.
Two open reading frames denoted as cpcE and cpcF were cloned and sequenced from Synechococcus sp. PCC 6301. The cpcE and cpcF genes are located downstream of the cpcB2A2 gene cluster in the phycobilisome rod operon and can be transcribed independently of the upstream cpcB2A2 gene cluster. The cpcE and cpcF genes were separately inactivated by insertion of a kanamycin resistance cassette in Synechococcus sp. PCC 7942 to generate mutants R2EKM and R2FKM, respectively, both of which display a substantial reduction in spectroscopically detectable phycocyanin. The levels of - and -phycocyanin polypeptides were reduced in the R2EKM and R2FKM mutants although the phycocyanin and linker genes are transcribed at normal levels in the mutants as in the wild type indicating the requirement of the functional cpcE and cpcF genes for normal accumulation of phycocyanin. Two biliprotein fractions were isolated on sucrose density gradient from the R2EKM/R2FKM mutants. The faster sedimenting fraction consisted of intact phycobilisomes. The slower sedimenting biliprotein fraction was found to lack phycocyanin polypeptides, thus no free phycocyanin was detected in the mutants. Characterization of the phycocyanin from the mutants revealed that it was chromophorylated, had a max similar to that from the wild type and could be assembled into the phycobilisome rods. Thus, although phycocyanin levels are reduced in the R2EKM and R2FKM mutants, the remaining phycocyanin seems to be chromophorylated and similar to that in the wild type with respect to phycobilisome rod assembly and energy transfer to the core.  相似文献   

5.
Localization of glutamine synthetase in thin sections of nitrogen-fixing Anabaena cylindrica was performed using immuno-gold/transmission electronmicroscopy. The enzyme was present in all of the three cell types possible; vegetative cells, heterocysts and akinetes. The specific gold label was always more pronounced in heterocysts compared with vegetative cells, and showed a uniform distribution in all three types. No specific label was associated with subcellular inclusions such as carboxysomes, cyanophycin granules and polyphosphate granules. When anti-glutamine synthetase antiserum was omitted, no label was observed.Abbreviation GS glutamine synthetase  相似文献   

6.
Frankia sp. strain CpI1 has two glutamine synthetases designated GSI and GSII. Biosynthetic activities of both GSI and GSII were strongly inhibited by ADP and AMP. Alanine, aspartate, glycine and serine inhibited both GSI and GSII activities, whereas asparagine and lysine inhibited only slightly. Glutamine inhibited GSII but did not affect GSI. Since GSII is more heat labile than GSI, their relative heat stabilities can be used to determine their contribution to total GS activity. In cells grown on ammonia and on glutamine as sole combined-nitrogen sources most GS activity detected in crude extracts was due to GSI. In cells transferred to glutamate, GSI accounted for all GS activity in the first 15 h and then heat labile GSII was induced and increased to account for 40% of total GS activity within 50 h. Transfer of N2-fixing cells to ammonia-containing medium led to a rapid decrease of GSII and a slow increase of GSI activity within 24 h. Conversely, when ammonia-grown cells were transferred to combined nitrogen-free medium, GSI activity gradually decreased and GSII increased before total activity leveled off in 50 h. GSII appears to be an ammonia-assimilating enzyme specifically synthesized during perceived N-starvation of Frankia cells.  相似文献   

7.
In the presnet studies with whole cells and extracts of the photosynthetic bacterium Rhodopseudomonas capsulata the rapid inhibition of nitrogenase dependent activities (i.e. N2-fixation acetylene reduction, or photoproduction of H2) by ammonia was investigated. The results suggest, that the regulation of the nitrogenase activity by NH 4 + in R. capsulata is mediated by glutamine synthetase (GS). (i) The glutamate analogue methionine sulfoximine (MSX) inhibited GS in situ and in vitro, and simultaneously prevented nitrogenase activity in vivo. (ii) When added to growing cultures ammonia caused rapid adenylylation of GS whereas MSX abolished the activity of both the adenylylated and unadenylylated form of the enzyme. (iii) Recommencement of H2 production due to an exhaustion of ammonia coincided with the deadenylylation of GS. (iv) In extracts, the nitrogenase was found to be inactive only when NH 4 + or MSX were added to intact cells. Subsequently the cells had to be treated with cetyltrimethylammonium bromide (CTAB). (v) In extracts the nitrogenase activity declined linearily with an increase of the ration of adenylylated vs. deadenylylated GS. A mechanism for inhibition of nitrogenase activity by ammonia and MSX is discussed.Abbreviations BSA bovin serum albumine - CTAB cetyltrimethylammonium bromide - GOGAT l-glutamine: 2-oxoglutarate amino transferase - GS glutamine synthetase - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

8.
The unicellular cyanobacterium Synechococcus PCC6301 lacks a hybridisable homologue of the strongly conserved gdhA gene of E. coli that encodes NADP-specific glutamate dehydrogenase. This is consistent with the failure to find this enzyme in extracts of the cyanobacterium. The E. coli gdhA gene was transferred to Synechococcus PCC6301 by transformation with an integrative vector. High levels of glutamate dehydrogenase activity, similar to those found in ammonium grown E. coli cells, were found in these transformants. These transformed cyanobacteria displayed an ammonium tolerant phenotype, consistent with the action of their acquired glutamate dehydrogenase activity as an ammonium detoxification mechanism. Minor differences in colony size and in growth at low light intensity were also observed.  相似文献   

9.
Previous attempts to isolate auxotrophic mutants of Anacystis nidulans produced only a limited range of phenotypes. The frequency of recovery of auxotrophic mutants has been quantified following different mutagenic and selective treatments, and their yield has been improved by using (1) a complete medium, (2) additional mutagens, (3) multiple cycles of penicillin enrichment and (4) altered pre-enrichment starvation conditions. These modified induction and selection conditions permitted the isolation of mutants defective in nitrate reductase, nitrite reductase or malate dehydrogenase, unable to reduce sulphate, or deficient in the synthesis of biotin, thiamine, paminobenzoate, serine, glutamate, adenine or uracil.  相似文献   

10.
Two different thioredoxins designated as thioredoxin A and B have been isolated from the cyanobacterium Synechococcus 6301. Methods for large scale purification of these thioredoxins were developed. Thioredoxin B has been purified to homogeneity; it has a molecular weight of 11,800 and an isoelectric point of 4.6. The following K m data were obtained for this thioredoxin; a) in the PAPS-sulfotransferase assay of Synechococcus 6301: 10.7 M; b) in the fructose-1-6-bisphosphatase assay of Synechococcus 6301: 1.7 M; c) in the APS-sulfotransferase assay of Chroococcidiopsis 7203: 5.4M. Thioredoxin A has an isoelectric point of 4.1 and it is active in the PAPS-sulfotransferase and fructose-1-6-bisphosphatase of Synechococcus 6301; it is not active in the APS-sulfotransferase of Chroococcidiopsis 7203.Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

11.
Pore-forming protein (porin) was isolated from N,N-dimethyl-dodecylaminoxid (LDAO)-extracted outer membranes of Synechococcus PCC 6301 and purified by ion exchange chromatography on DEAE-Sephacel column. The apparent molecular mass on SDS-PAGE was determined to be about 52000. The native porin was reconstituted into black lipid bilayer membranes and showed a single-channel conductance of 5.5 nS in 1 M KCl. The porin was found to be N-terminally blocked. The C-terminal amino acid sequence was identified as Phe-Thr-Phe. Amino acid analysis suggested that the porin protein consists of about 420 amino acid residues, yielding a polarity of 43.6% and a molecular mass of 45000 in contrast to the mobility on SDS-PAGE.Abbreviations DEAE Diethylaminoethyl; M r, relative molecular mass - LDAO N,N-Dimethyl-dodecylaminoxid - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoretogram - PCC Pasteur Culture Collection - SDS sodium dodecyl sulfate - UTEX Culture Collection of Algae at the University of Texas  相似文献   

12.
Investigations of the unicellular marine cyanobacterium Synechococcus PCC 7002 revealed its ability to metabolize phenol under non-photosynthetic conditions up to 100 mg L–1. Under continuous light, photoautotrophic growth was reduced only slightly in the presence of this phenol concentration, but no transformation was observed. However neither under photoautotrophic nor heterotrophic conditions were the cells able to use phenol for growth. During the degradation of phenol in the dark cis,cis-muconic acid was produced as the major product, which was identified by gas chromatography/mass spectrometry. This result was confirmed by an identical absorption spectrum and an identical retention time in high performance liquid chromatographic analysis with authentic muconic acid as standard. This provides the first record for an ortho-fission of a phenolic substance by cyanobacteria. Further investigations of the breakdown mechanism of phenol have shown that the transformation is an extracellular process inhibited by heat, proteases and metal ions and is probably catalyzed by a protein.  相似文献   

13.
The supramolecular structure of the exoplasmic freeze-fracture particles of thylakoids of the thermophilic cyanobacterium Synechococcus sp. is compared with that of isolated photosystem-II complexes. The in-situ EF particles are scattered on the thylakoids or organized in rows of variable length; the latter aligned particles measure 10 nmx20 nm and are separated perpendicular to their long axis into two parts. We propose that they represent dimers composed of two monomeric 10-nm EF particles side by side. Isolated photosystem (PS)II particles correspond in size to the monomeric 10-nm EF particles as analysed by negative contrast and freeze-fracture electron microscopy. Dimeric PSII particles, very similar to the in-situ 10 nmx20 nm EF particles, are obtained after incorporation of purified PSII complexes into liposomes made from phospholipid and cholesterol. Each monomeric complex consists of the reaction center, the water-splitting system, the chlorophyll antennae and phycobilisome-binding polypeptides. We propose that the dimeric complexes bind one hemidiscoidal phycobilisome at their domains exposed to the external side of the thylakoids. The implications of this arrangement of the PSII-phycobilisome complexes within the thylakoids upon excitation-energy distribution are discussed.Abbreviations EF exoplasmic fracture face - LDS lithium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - PS photosystem - SDS sodium dodecyl sulfate - SPC-buffer 0.5 M sucrose, 0.5 M K2HPO4/KH2PO4, 0.3 M Nacitrate, pH 7.0 This study is dedicated to Professor W. Nultsch on the occasion of his 60th birthday.  相似文献   

14.
Summary. Among prokaryotes, cyanobacteria are unique in having highly differentiated internal membrane systems. Like other Gram-negative bacteria, cyanobacteria such as Synechocystis sp. strain PCC 6803 have a cell envelope consisting of a plasma membrane, peptidoglycan layer, and outer membrane. In addition, these organisms have an internal system of thylakoid membranes where the electron transfer reactions of photosynthesis and respiration occur. A long-standing controversy concerning the cellular ultrastructures of these organisms has been whether the thylakoid membranes exist inside the cell as separate compartments, or if they have physical continuity with the plasma membrane. Advances in cellular preservation protocols as well as in image acquisition and manipulation techniques have facilitated a new examination of this topic. We have used a combination of electron microscopy techniques, including freeze-etched as well as freeze-substituted preparations, in conjunction with computer-aided image processing to generate highly detailed images of the membrane systems in Synechocystis cells. We show that the thylakoid membranes are in fact physically discontinuous from the plasma membrane in this cyanobacterium. Thylakoid membranes in Synechocystis sp. strain PCC 6803 thus represent bona fide intracellular organelles, the first example of such compartments in prokaryotic cells. Supplementary material to this paper is available in electronic form at Correspondence and reprints: Department of Biology, CB1137, Washington University, St. Louis, MO 63130, U.S.A.  相似文献   

15.
Ion-exchange chromatography has been used to separate the isoforms of glutamine synthetase (GS; EC 6.3.1.2) appearing in sunflower (Helianthus annuus L. cv. Peredovic) cotyledons during seedling growth under different light and nitrogen conditions. Both in dry and imbibed seeds, only a single form of GS (GSs) was detected. Upon seed germination, the GSs isoform was gradually replaced by cytosolic (GS1) and plastidic (GS2) isoforms. Light and nitrate decreased the levels of GS1. In contrast, the appearance of GS2 was greatly stimulated by light. Nitrate also had a positive effect, particularly in the light. Light and nitrate acted synergistically on the appearance of GS2. The GS2:GS1 ratio in cotyledons of 9-d-old seedlings ranged from about 2, in darkness and nitrate-deprivation conditions, to 16 under light and nitrate application. The possible physiological roles of the distinct GS isoforms appearing in the epigeal cotyledons of sunflower during germination, and their differential regulation by light and nitrate, are discussed.Abbreviations GS glutamine synthetase - GS1 cytosolic GS - GS2 plastidic GS - GSs GS from seeds This work was supported by a grant from Dirección General de Investigatión Científica y Técnica (PB90-0777) and Plan Andaluz de Investigación (3261), Spain. P.C. gratefully acknowledges receipt of a scholarship from Junta de Andalucía. The valuable technical assistance of Mrs. G. Alcalá is greatly appreciated. We are also grateful to Eurosemillas (Córdoba) for supplying us with sunflower seeds.  相似文献   

16.
The mechanism by which state 1-state 2 transitions in the cyanobacterium Synechococcus 6301 are controlled was investigated by examining the effects of a variety of chemical and illumination treatments which modify the redox state of the plastoquinone pool. The extent to which these treatments modify excitation energy distribution was determined by 77K fluorescence emission spectroscopy. It was found that treatment which lead to the oxidation of the plastoquinone pool induce a shift towards state 1 whereas treatments which lead to the reduction of the plastoquinone pool induce a shift towards state 2. We therefore propose that state transitions in cyanobacteria are triggered by changes in the redox state of plastoquinone or a closely associated electron carrier. Alternative proposals have included control by the extent of cyclic electron transport around PS I and control by localised electrochemical gradients around PS I and PS II. Neither of these proposals is consistent with the results reported here.Abbreviations DBMIB 2,5-dibromo-3methyl-6-isopropyl-p-benzoquinone - Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DQH2 duroquinol (tetramethyl-p-hydroquinone) - LHC II light-harvesting chlorophyll a/b-binding protein of PS II - Light 1 light predominantly exciting PS I - Light 2 light predominantly exciting PS II - M.V. methyl viologen - PS photosystem  相似文献   

17.
The hydrogenase-catalyzed hydrogen production exhibited by the unicellular cyanobacterium Cyanothece 7822 during anoxic incubation in the dark is a result of the fermentative degradation of carbon reserves. Simultaneously with hydrogen production, evolution of carbon dioxide was detected, and excretion of ethanol, lactate, formate and acetate was demonstrated. The fermentation balance indicates that carbohydrates are fermented via a branched pathway, in which both the pentose phosphate pathway and glycolysis appear to be involved. It is proposed that the physiological function of hydrogen production is the introduction of protons as terminal electron acceptors. This removal of reducing equivalents might give rise to continuation of the pyruvate decarboxylation and consequently of the acetate formation, thereby increasing the efficiency of fermentative energy generation.  相似文献   

18.
Ferredoxin-glutamate synthase from the unicellular cyanobacterium Synechococcus sp. PCC 6301 has been purified using, as main steps, ethanol fractionation in the presence of high ionic strength, ion-exchange chromatography and ferredoxin-Sepharose affinity chromatography. The overall process yielded an homogeneous enzyme with a specific activity of 30 U/mg protein, after a purification of 2800-fold with a recovery of 43%. The molecular mass of the native protein was 156 kDa, as calculated from its Stokes radius (rS, 4.32 nm) and sedimentation coefficient (S20,w, 8.46 S). The size was also estimated by SDS/PAGE as 160 kDa, indicating that the native protein was a monomer. The enzyme exhibited absorption maxima at 279, 370 and 438 nm and a A279/A438 absorbance ratio of 11. One molecule of FMN, but not FAD, was found/molecule native protein. The addition of dithionite resulted in the loss of the absorption peak at 438 nm, which was restored by the addition of 2-oxoglutarate, thus indicating that the prosthetic group is functional in catalysis. Classical hyperbolic kinetics with substrate inhibition was seen for 2-oxoglutarate. The Km values determined for glutamine and ferredoxin were 0.7 mM and 7 microM, respectively, and the apparent Km for 2-oxoglutarate was estimated to be 1.7 mM. Azaserine and 6-diazo-5-oxo-L-norleucine were potent inhibitors of the activity, while pyridoxal 5-phosphate, known to react with Lys residues, partially inactivated the enzyme. This ferredoxin-dependent glutamate synthase is, as far as we know, the first purified from prokaryotic organisms and resembles its counterpart from chloroplasts, suggesting that cyanobacterial glutamate synthase may have been the ancestor of ferredoxin-glutamate synthase in plants.  相似文献   

19.
Nitrogen-limited continuous cultures of Cyanidium caldarium contained induced levels of glutamine synthetase and nitrate reductase when either nitrate or ammonia was the sole nitrogen source. Nitrate reductase occurred in a catalytically active form. In the presence of excess ammonia, glutamine synthetase and nitrate reductase were repressed, the latter enzyme completely. In the presence of excess nitrate, intermediate levels of glutamine synthetase activity occurred. Nitrate reductase was derepressed but occurred up to 60% in a catalytically inactive form.Cell suspensions of C. caldarium from nitrate- or ammonialimited cultures assimilated either ammonia or nitrate immediately when provided with these nutrients. In these types of cells, as well as in cells grown with excess nitrate, the rate of ammonia assimilation was 2.5-fold higher than the rate of nitrate assimilation. It is proposed that the reduced rate at which nitrate was assimilated as compared to ammonia might be due to regulatory mechanisms which operate at the level of nitrate reductase activity.  相似文献   

20.
Characteristics of the three major ammonia assimilatory enzymes, glutamate dehydrogenase (GDH), glutamine synthetase (GS) and glutamate synthase (GOGAT) in Corynebacterium callunae (NCIB 10338) were examined. The GDH of C. callunae specifically required NADPH and NADP+ as coenzymes in the amination and deamination reactions, respectively. This enzyme showed a marked specificity for -ketoglutarate and glutamate as substrates. The optimum pH was 7.2 for NADPH-GDH activity (amination) and 9.0 for NADP+-GDH activity (deamination). The results showed that NADPH-GDH and NADP+-GDH activities were controlled primarily by product inhibition and that the feedback effectors alanine and valine played a minor role in the control of NADPH-GDH activity. The transferase activity of GS was dependent on Mn+2 while the biosynthetic activity of the enzyme was dependent on Mg2+ as essential activators. The pH optima for transferase and biosynthetic activities were 8.0 and 7.0, respectively. In the transfer reaction, the K m values were 15.2 mM for glutamine, 1.46 mM for hydroxylamine, 3.5×10-3 mM for ADP and 1.03 mM for arsenate. Feedback inhibition by alanine, glycine and serine was also found to play an important role in controlling GS activity. In addition, the enzyme activity was sensitive to ATP. The transferase activity of the enzyme was responsive to ionic strength as well as the specific monovalent cation present. GOGAT of C. callunae utilized either NADPH or NADH as coenzymes, although the latter was less effective. The enzyme specifically required -ketoglutarate and glutamine as substrates. In cells grown in a medium with glutamate as the nitrogen source, the optimum pH was 7.6 for NADPH-GOGAT activity and 6.8 for NADH-GOGAT activity. Findings showed that NADPH-GOGAT and NADH-GOGAT activities were controlled by product inhibition caused by NADP+ and NAD+, respectively, and that ATP also had an important role in the control of NADPH-GOGAT activity. Both activities of GOGAT were found to be inhibited by azaserine.Abbreviations GDH glutamate dehydrogenase - GOGAT glutamate synthase - GS glutamine synthetase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号