首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three synthetic substrates H-Arg-NH-Mec, Bz-Arg-NH-Mec and H-Cit-NH-Mec (Bz, Benzoyl; NH-Mec, 4-methylcoumaryl-7-amide; Cit, citrulline) were used to characterize specificity requirements for the P1-S1 interaction of cathepsin H from rat liver. From rapid equilibrium kinetic studies it was shown that Km, kcat and the specificity constants kcat/Km are quite similar for substrates with a free alpha-amino group. In contrast, a 25-fold decrease of kcat/Km was observed for the N-terminal-blocked substrate Bz-Arg-NH-Mec. The activation energies for H-Arg-NH-Mec and Bz-Arg-NH-Mec were determined to be 37 kJ/mol and 55 kJ/mol, respectively, and the incremental binding energy delta delta Gb of the charged alpha-amino group was estimated to -8.1 kJ/mol at pH 6.8. The shown preference of cathepsin H for the unblocked substrates H-Arg-NH-Mec and H-Cit-NH-Mec was further investigated by inspection of the pH dependence of kcat/Km. The curves of the two substrates with a charged alpha-amino group showed identical bell-shaped profiles which both exhibit pKa1 and pKa2 values of 5.5 and 7.4, respectively, at 30 degrees C. The residue with a pKa1 of 5.5 in the acid limb of the activity profile of H-Arg-NH-Mec was identified by its ionization enthalpy delta Hion = 21 kJ/mol as a beta-carboxylate or gamma-carboxylate of the enzyme, whereas the residue with a pKa2 of 7.4 was assigned to the free alpha-amino group of the substrate with a delta Hion of 59 kJ/mol. Bz-Arg-NH-Mec showed a different pH-activity profile with a pKa1 of 5.4 and a pKa2 of 6.6 at 30 degrees C. Cathepsin H exhibits no preference for a basic P1 side chain as has been shown by the similar kinetics of H-Arg-NH-Mec and the uncharged, isosteric substrate H-Cit-NH-Mec. In summary, specific interactions of an anionic cathepsin H active site residue with the charged alpha-amino group of substrates caused transition state stabilization which proves the enzyme to act preferentially as an aminopeptidase.  相似文献   

2.
Characterization of proline endopeptidase from rat brain   总被引:1,自引:0,他引:1  
P C Andrews  C M Hines  J E Dixon 《Biochemistry》1980,19(24):5494-5500
A homogeneous proline endopeptidase from rat brain is characterized with respect to its substrate specificity and the residues essential for catalysis. The two fluorogenic substrate analogues tested, pyroglutamylhistidylprolyl-beta-naphthylamide and pyroglutamy(N-benzylimidazolyl)-histidylprolyl-beta-naphthylamide, have higher Vmax values (19.5 and 26.9 mumol . min-1 . mg-1, respectively) and considerably lower Km values (0.034 and 0.020 mM, respectively) than pyroglutamylhistidylprolylamide (Vmax = 2.9 mumol . min-1 . mg-1 and Km = 4.1 mM). Both fluorogenic substrates give rise to pH optima and pH-rate profiles similar to those of the amide. Values of Km and kcat are determined as a function of pH. Km is pH independent, with the titration curve for kcatKm-1 implicating an active-site residue(s) with a pKa of 6.2. Proline endopeptidase can be completely inactivated by low concentrations of diisopropyl fluorophosphate with an observed second-order rate constant of 2.5 x 10(4) min-1 . M-1. The stoichiometry of the alkylphosphorylation is 0.83 mol/mol of enzyme. The pH dependence of the inactivation by diisopropylfluorophosphate implicates a residue(s) involved in covalent bond formation having a pKa of 6.0. These data suggest that proline endopeptidase is a serine proteinase.  相似文献   

3.
A kinetic study of hydrolytic catalysis by wheat bran carboxypeptidase (carboxypeptidase W) was carried out using 3-(2-furyl)acryloyl-acylated (Fua-) synthetic substrates. This enzyme showed high esterase activity in addition to the intrinsic carboxypeptidase activity. The optimum pH for the peptidase activity (kcat/Km) was at pH 3.3 and the kcat/Km value decreased with increasing pH with an apparent pKa of 4.50, while the esterase activity increased with pH up to pH 8 with an apparent pKa of 6.04. Optimum pH's for kcat for the peptidase and esterase reactions were also very different and their apparent pKa values were 3.80 and 6.15, respectively. From a measurement of the pressure dependences of kcat and Km, the activation volumes (delta V not equal to) and reaction volumes (delta V), respectively, were determined. delta V not equal to for kcat was -7 to -8 ml/mol for peptidase and -2 to -3 ml/mol for esterase. These results lead us to propose that the peptidase and esterase activities of carboxypeptidase W are different not in the rate-determining steps in a common reaction pathway, but in the binding modes and/or catalytic site(s).  相似文献   

4.
We have measured the pH dependence of kcat and kcat/Km for CO2 hydration catalyzed by both native Zn2+-and metallo-substituted Co2+-bovine carbonic anhydrase II in the absence of inhibitory ions. For the Zn2+-enzyme, the pKa values controlling kcat and kcat/Km profiles are similar, but for the Co2+-enzyme the values are about 0.6 pH units apart. Computer simulations of a metal-hydroxide mechanism of carbonic anhydrase suggest that the data for both native and Co2+-carbonic anhydrase can be accounted for by the same mechanism of action, if we postulate that the substitution of Co2+ for Zn2+ in the active site causes a separation of about 0.6 pH units in the pKa values of His-64 and the metal-bound water molecule. We have also measured the activation parameters for kcat and kcat/Km for Co2+-substituted carbonic anhydrase II-catalyzed CO2 hydration and have compared these values to those obtained previously for the native Zn2+-enzyme. For kcat and kcat/Km we obtain an enthalpy of activation of 4.4 +/- 0.6 and approximately 0 kcal mol-1, respectively. The corresponding entropies of activation are -18 +/- 2 and -27 +/- 2 cal mol-1 K-1.  相似文献   

5.
A M Davis  A C Regan  A Williams 《Biochemistry》1988,27(25):9042-9047
The title esters are demonstrated to be specific substrates of bovine pancreatic ribonuclease A (EC 3.1.27.5). The Br?nsted dependence of kcat/Km at pH 7.50 for the enzyme-catalyzed cyclization versus the pKa of the leaving phenol exhibits two regression lines of almost identical slope for respectively 2-chlorophenols and 2,6-unsubstituted phenols: log kcat/Km = -0.20 pKa ArOH + 5.47 (n = 5, r = 0.957); log kcat/Km = -0.17 pKa ArOH + 5.79 (n = 4, r = 0.965). Comparison of the Br?nsted beta 1g's with that for the standard reaction where imidazole catalyzes the cyclization (beta 1g = -0.59) indicates considerably less development of negative charge on the leaving oxygen in the enzyme case, providing experimental evidence for the hypothesis that electrophilic assistance is involved in catalysis. The existence of two essentially parallel Br?nsted correlations is not reflected in the standard reaction of substrate with imidazole. Modeling studies indicate that the phenyl ring of the substrate can take up a range of positions away from the active site; the presence of ortho chloro substituents considerably restricts the motion of the phenyl leaving group.  相似文献   

6.
Z Y Zhang  R L Van Etten 《Biochemistry》1991,30(37):8954-8959
The kcat and Km values for the bovine heart low molecular weight phosphotyrosyl protein phosphatase catalyzed hydrolysis of 16 aryl phosphate monoesters and of five alkyl phosphate monoesters having the structure Ar(CH2)nOPO3H2 (n = 1-5) were measured at pH 5.0 and 37 degrees C. With the exception of alpha-naphthyl phosphate and 2-chlorophenyl phosphate, which are subject to steric effects, the values of kcat are effectively constant for the aryl phosphate monoesters. This is consistent with the catalysis being nucleophilic in nature, with the existence of a common covalent phosphoenzyme intermediate, and with the breakdown of this intermediate being rate-limiting. In contrast, kcat for the alkyl phosphate monoesters is much smaller and the rate-limiting step for these substrates is interpreted to be the phosphorylation of the enzyme. A single linear correlation is observed for a plot of log (kcat/Km) vs leaving group pKa for both classes of substrates at pH 5.0: log (kcat/Km) = -0.28pKa + 6.88 (n = 19, r = 0.89), indicating a uniform catalytic mechanism for the phosphorylation event. The small change in effective charge (-0.28) on the departing oxygen of the substrate is similar to that observed in the specific acid catalyzed hydrolysis of monophosphate monoanions (-0.27) and is consistent with a strong electrophilic interaction of the enzyme with this oxygen atom in the transition state. The D2O solvent isotope effect and proton inventory experiments indicate that only one proton is "in flight" in the transition state of the phosphorylation process and that this proton transfer is responsible for the reduction of effective charge on the leaving oxygen.  相似文献   

7.
Mechanistic studies on thrombin catalysis   总被引:1,自引:0,他引:1  
S R Stone  A Betz  J Hofsteenge 《Biochemistry》1991,30(41):9841-9848
The kinetic mechanism of the cleavage of four p-nitroanilide (pNA) substrates by human alpha-thrombin has been investigated by using a number of steady-state kinetic techniques. Solvent isotope and viscosity effects were used to determine the stickiness of the substrates at the pH optimum of the reaction; a sticky substrate is defined as one that undergoes catalysis faster than it dissociates from the Michaelis complex. Whereas benzoyl-Arg-pNA could be classified as a nonsticky substrate, D-Phe-pipecolyl-Arg-pNA was very sticky. The other two substrates (tosyl-Gly-Pro-Arg-pNA and acetyl-D-Phe-pipecolyl-Arg-pNA) were slightly sticky. The pH profiles of kcat/Km were bell-shaped for all substrates. The pKa values determined from the pH dependence of kcat/Km for benzoyl-Arg-pNA were about 7.5 and 9.1. Similar pKa values were determined from the pH profiles of kcat/Km for tosyl-Gly-Pro-Arg-pNA and acetyl-D-Phe-pipecolyl-Arg-pNA and for the binding of the competitive inhibitor N alpha-dansyl-L-arginine-4-methylpiperidine amide. The groups responsible for the observed pKa values were proposed to be His57 and the alpha-amino group of Ile16. The temperature dependence of the pKa values was consistent with this assignment. The pKa values of 6.7 and 8.6 observed in the pH profile of kcat/Km for D-Phe-pipecolyl-Arg-pNA were displaced to lower values than those observed for the other substrates. The displacement of the acidic pKa value could be attributed to the stickiness of this substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Detailed kinetic analyses of carboxypeptidase P-catalyzed reactions were carried out spectrophotometrically using 3-(2-furyl)acryloyl-acylated peptide substrates. The maximum kcat/Km was observed at around pH 3.5 for the synthetic peptide substrates. The kcat/Km value decreased with increasing pH, with an apparent pKa value of 4.43. However, the maximum kcat was observed at neutral pH (pH congruent to 6) and the pKa was 4.49. These apparently different pH profiles for kcat/Km and kcat of this enzyme were due to the decreasing Km value in the acid pH region. The pressure and temperature dependences of these kinetic parameters were also measured. N-Benzoylglycyl-L-phenyllactate (Bz-Gly-OPhLac) gave dependences similar to those of the peptide substrate, suggesting that there is no distinct difference in the catalytic mechanism between the peptide and the ester hydrolyses.  相似文献   

9.
In an attempt to characterize the groups essential for the catalytic action extracellular endo-D-galacturonanase of Aspergillus niger (poly (1,4-alpha-D-galacturonide) glycanohydrolase, EC 3.2.1.15) the behaviour of the kinetic parameters as a function of pH was examined. The dependence of kcat and kcat/Km on pH suggests that two dissociable groups are involved, for which the pK values of about 3.0 and 5.0 in the free enzyme and 3.06 and 5.72 in the catalytic complex were found at 30 degrees C. These values and the value of the heat of ionization of the acidic group, deltaHi 6.48 kcal/mol, resulting from the pKa values obtained at 20 degrees C (5.91) and at 30 degrees C (5.72) suggest the participation of a carboxylate group and a protonated imidazole group of histidine in the reaction catalyzed by endo-D-galacturonanase.  相似文献   

10.
M Farnum  M Palcic  J P Klinman 《Biochemistry》1986,25(8):1898-1904
The pH dependence of steady-state parameters for [1,1-1H2]- and [1,1-2H2]benzylamine oxidation and of tritium exchange from [2-3H]dopamine has been measured in the bovine plasma amine oxidase reaction. Deuterium isotope effects on kcat/Km for benzylamine are observed to be constant, near the intrinsic value of 13.5, over the experimental pH range, indicating that C-H bond cleavage is fully rate limiting for this parameter. As a consequence, pKa values derived from kcat/Km profiles, 8.0 +/- 0.1 (pK1) and 9.0 +/- 0.16 (pKs), can be ascribed to microscopic pKa values for the ionization of an essential active site residue (EB1) and substrate, respectively. Profiles for kcat and Dkcat show that EB1 undergoes a perturbation from 8.0 to 5.6 +/- 0.3 (pK1') in the presence of substrate; additionally, a second ionization, pK2 = 7.25 +/- 0.25, is observed to mediate but not be essential for enzyme reoxidation. The pH dependence of the ratio of tritium exchange to product formation for dopamine also indicates base catalysis with a pKexch = 5.5 +/- 0.01, which is within experimental error of pK1'. We conclude that the data presented herein support a single residue catalyzing both substrate oxidation and exchange, consistent with recent stereochemical results that implicate a syn relationship between these processes [Farnum, M., & Klinman, J.P. (1985) Fed. Proc., Fed. Am. Soc. Exp. Biol. 44, 1055]. This conclusion contrasts with earlier kinetic data in support of a large rate differential for the exchange of hydrogen from C-1 vs. C-2 of phenethylamine derivatives [Palcic, M.M., & Klinman, J.P. (1983) Biochemistry 22, 5957-5966].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The hydrolysis of adenosine 3':5'-monophosphate by the high Km cyclic nucleotide phosphodiesterase of bakers' yeast was studied over a range of temperature and pH at I = 0.17. The effects of ionic strength and MgCl2 concentration were studied at pH 7.7 and 30 degrees C. Km and Vmax were insensitive to changes in the MgCl2 concentration between 1 and 30 mM, implying that this enzyme (which does not require free divalent metal ions) does not discriminate between free cyclic AMP- and the Mg-cyclic AMP+ complex. Vmax decreased below pH 6.8 because of protonation of a group required in the basic form in the enzyme x substrate complex. On the basis of its pK (5.46 at 30 degrees C) and delta H (23 kJ/mol) this group was tentatively identified as imidazole. Vmax/Km decreased above pH 6.8 because of ionization of a group required in the acid form in the free enzyme, with a pK of 7.88 at 30 degrees C and a delta H of about 13 kJ/mol. Several possibilities exist for the identity of this group, the most likely being a second imidazole, sulfhydryl, or a water molecule bonded to tightly bound zinc. At pH 7.90, log Vmax and log Km both changed linearly with 1/T (between 12 degrees C and 37 degrees C) with enthalpies of 47 and 55 kJ/mol, respectively. Consequently, at low enough cyclic AMP concentration, the rate of reaction at pH 7.90 decreases slightly when the temperature is increased. This is also true at higher pH, but in the physiological pH range (6.4 to 7.5) Vmax/Km and, therefore, the rate of reaction at very low cyclic AMP concentration were nearly independent of temperature. Under physiological conditions, the Km approaches the upper limit of in vivo cyclic AMP concentrations in yeast, and at normal in vivo cyclic AMP concentrations the pH optimum is within or below the physiological range of pH in yeast.  相似文献   

12.
A trehalase (EC 3.2.1.28) of 67 kDa was purified to homogeneity from the midgut of Spodoptera frugiperda (Lepidoptera) larvae. The enzyme is inhibited by toxic beta-glucosides produced by plants (amygdalin, prunasin, salicin and phlorezin) and by their aglycones (mandelonitrile, phloretin). From kcat and Km values determined in different pHs, the pKa values of catalytic essential groups were calculated (pKa = 4.5 and pKa = 8.0). These pKa values agree with the ones determined from enzyme chemical in activation with carbodiimide and phenyl glyoxal, respectively, indicating that the enzyme has a carboxyl group that act as a nucleophile and a guanidine group that is the proton donor during the catalytic cycle. The enzyme has two putative subsites for glucose binding. Based on the protection afforded by ligands against chemical modification, the roles of the subsites were inferred. Thus, the one that binds the competitive inhibitors, methyl alpha-glucoside (MalphaGlu) and mandelonitrile, contains the catalytic carboxyl, whereas the other having the catalytic Arg residue binds the competitive inhibitor Tris. Diethyl pyrocarbonate is ineffective except in the presence of MalphaGlu, when it decreases trehalase activity and changes the pKa value of the catalytic Arg residue. This suggests that the pKa value of the Arg residue is modulated by a His residue located near the active site. This also indicates that the enzyme molecule changes its conformation when the subsite containing the carboxyl group is occupied. The increase in trehalase inactivation by phenyl glyoxal in the presence of MalphaGlu agrees with the last observation.  相似文献   

13.
The pH-dependence of RNAase A and of Ntau-carboxymethylhistidine-12-RNAase (ribonucleate 3'-pyrimidino-oligonucleotidohydrolase) catalysis was studied. Apparent acid dissociation constants were obtained by least squares analysis of the kinetics data. These dissociation constants were compared with pKa values of model imidazole compounds, and with pKa values of histidine residues 12 and 119 on the protein. The shapes of the kcat versus pH profiles for RNAase A and its carboxymethyl derivative are very similar, from which it is concluded that the mechanism of catalysis is closely similar in the two proteins. Apparent pKa values obtained from the kinetic data are higher for the carboxymethylated protein than for RNAase A, as are the pKa values of residues 12 and 119. The similar shifts are consistent with the conclusions that both these residues are functionally significant in native and modified enzyme, and that an unblocked tau-nitrogen on histidine-12 is not essential for activity. From the enzyme's catalytic dependence on pH, and the NMR determined pKa values we propose that histidine 12 and 119 function catalytically in their basic and acidic forms respectively.  相似文献   

14.
For bovine erythrocyte acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7), the Michaelis parameters Vmax., and Km for the natural substrate acetylcholine were estimated as a function of pH and sodium chloride concentration by the pH-stat method. A single dissociation constant for Na+ binding (K = 7 X 10(-3) M) suffices to explain the salt dependence of Vmax./Km and of Km as well as the pH dependence of Vmax./Km and Vmax., Km being pH independent. This finding provides evidence for a specific effect of Na+, presumably by binding at the anionic subsite of the active centre. Na+ binding causes a 50-fold decrease in kcat./Km as well as a decrease of one unit in the pKa of both kcat./Km and kcat.. The intrinsic pKa in the absence of salt at 25 degrees C is about 7.5. Comparison of the degree of fit of the data to the Debeye-Huckel equation, in accordance with an alternative general salt effect, as well as published data for sodium and potassium chlorides also favour a specific salt effect.  相似文献   

15.
Cathepsin B has been shown to catalyze the transfer of the N alpha-benzyloxycarbonyl-L-lysyl residue from the corresponding p-nitrophenyl ester substrate to water and dipeptide nucleophiles. These reactions occurred through the formation of an acyl-enzyme intermediate. The pH dependency of the acylation and deacylation steps were determined from the increases in the maximum rate of appearance of p-nitrophenol on addition of glycylglycine or L-leucylglycine to the reaction. The second order acylation rate constant, kcat/Km was found to depend on the state of ionization of three groups in the enzyme having pKa values of 4.2, 5.5, and 8.6. Protonation of the group with pKa = 5.5 decreased but did not abolish enzymatic activity, resulting in the appearance of a second, active protonic form of the enzyme between pH 4.2 and pH 5.5. The first order rate constant for the hydrolysis of the acyl-enzyme intermediate was independent of pH between 4.0 and 7.5. In contrast, acyl group transfer from cathepsin B to glycylglycine and L-leucylglycine depended on a group with a pKa of about 4.5. These results are discussed in terms of possible structural and functional homologies between the active sites of cathepsin B and papain.  相似文献   

16.
The phenolic group of active site residue Tyr-248 in carboxypeptidase A has a pKa value of 10.06, as determined from the pH dependence of its rate of nitration by tetranitromethane. The decrease in enzyme activity (kcat/Km) in alkaline solution, characterized by a pKa value of approximately 9.0 (for cobalt carboxypeptidase A), is associated with the protonation state of an imidazole ligand of the active-site metal ion, as indicated by a selective pH dependence of the 1H NMR spectrum of the enzyme. Inhibition of the cobalt-substituted enzyme by 2-(1-carboxy-2-phenylethyl)phenol and its 4,6-dichloro- and 4-phenylazo-derivatives confirms that the decrease in enzyme activity (kcat/Km) in acidic solution, characterized by a pKa value of 5.8, is due to the protonation state of a water molecule bound to the active-site metal ion in the absence of substrate. Changes in the coordination number of the active-site metal ion are seen in its visible absorption spectrum as a consequence of binding of the phenolic inhibitors. Conventional concepts regarding the mechanisms of the enzyme are brought into question.  相似文献   

17.
A series of benzyl cyanide analogs have been studied as substrates and inhibitors of dopamine beta-hydroxylase to extend our initial report (Baldoni, J. M., and Villafranca, J. J. (1980) J. Biol. Chem. 255, 8987-8990) which showed that p-hydroxybenzyl cyanide was a suicide substrate of dopamine beta-hydroxylase. Thus, the appVmax values for benzyl cyanide analogs decrease in the order p-OH greater than m-OH greater than H much greater than p-OCH3,m-OCH3; the m-OH, m-OCH3 and p-OCH3 analogs are competitive inhibitors versus tyramine in initial velocity studies. The Vmax values for tyramine and p-hydroxybenzyl cyanide are nearly identical at saturating O2 and ascorbate (pH 5.0, 37 degrees C) but the Km for O2 is 0.14 and 2.8 mM, respectively, with tyramine and p-hydroxybenzyl cyanide. Studies of the pH dependence of log V/K for tyramine show two pKa values of 5.2 and 5.8 while for m-hydroxybenzyl cyanide the values are 5.3 and 5.9. The log Vmax profile shows one pKa of 5.9 with tyramine as substrate. Thus, nearly identical enzymic groups are involved in binding and/or catalysis with these two substrates. All the benzyl cyanide analogs are suicide inactivators of dopamine beta-hydroxylase. With m-hydroxybenzyl cyanide, the partition between catalysis and inactivation (kcat/kinact) changed from approximately 600 to approximately 17 as the pH varied from 5.0 to 6.7. The log kinact versus pH profile shows one pKa value of 6.0, suggesting that an enzymic group must be deprotonated for maximal inactivation. Copper was essential for the suicide inactivation of dopamine beta-hydroxylase by benzyl cyanides and kinetic studies of partially inhibited dopamine beta-hydroxylase (approximately 50%) showed that inactive enzyme molecules were completely inactive. The following papers in this series discuss the partial reactivation of suicide-inhibited dopamine beta-hydroxylase and the stoichiometry of inactivation by benzyl cyanide analogs.  相似文献   

18.
Narine AA  Watson JN  Bennet AJ 《Biochemistry》2006,45(30):9319-9326
The sialidase from Micromonospora viridifaciens has been found to catalyze the hydrolysis of aryl 2-thio-alpha-D-sialosides with remarkable efficiency: the first- and second-order rate constants, kcat and kcat/Km, for the enzyme-catalyzed hydrolysis of PNP-S-NeuAc are 196 +/- 5 s(-1) and (6.7 +/- 0.7) x 10(5) M(-1) s(-1), respectively. A reagent panel of eight aryl 2-thio-alpha-D-sialosides was synthesized and used to probe the mechanism for the M. viridifaciens sialidase-catalyzed hydrolysis reaction. In the case of the wild-type enzyme, the derived Br?nsted parameters (beta(lg)) on kcat and kcat/Km are -0.83 +/- 0.11 and -1.27 +/- 0.17 for substrates with thiophenoxide leaving groups of pKa values > or = 4.5. For the general-acid mutant, D92G, the derived beta(lg) value on kcat for the same set of leaving groups is -0.82 +/- 0.12. When the conjugate acid of the departing thiophenol was < or = 4.5, the derived Br?nsted slopes for both the wild-type and the D92G mutant sialidase were close to zero. In contrast, the nucleophilic mutant, Y370G, did not display a similar break in the Br?nsted plots, and the corresponding values for beta(lg), for the three most reactive aryl 2-thiosialosides, on kcat and kcat/Km are -0.76 +/- 0.28 and -0.84 +/- 0.04, respectively. Thus, for the Y370G enzyme glycosidic C-S bond cleavage is rate-determining for both kcat and kcat/Km, whereas, for both the wild-type and D92G mutant enzymes, the presented data are consistent with a change in rate-determining step from glycosidic C-S bond cleavage for substrates in which the pKa of the conjugate acid of the leaving group is > or = 4.5, to either deglycosylation (kcat) or a conformational change that occurs prior to C-S bond cleavage (kcat/Km) for the most activated leaving groups. Thus, the enzyme-catalyzed hydrolysis of 2-thiosialosides is strongly catalyzed by the nucleophilic tyrosine residue, yet the C-S bond cleavage does not require the conserved aspartic acid residue (D92) to act as a general-acid catalyst.  相似文献   

19.
The kinetic parameters (kcat/Km) and the cleaved-bond distributions for the hydrolysis of linear maltooligosaccharides Gn (3 less than or equal to n less than or equal to 9) by Saccharomycopsis alpha-amylase (Sfamy) secreted from Saccharomyces cerevisiae were determined at pH 5.25 and 25 degrees C. The subsite affinities of Sfamy were also evaluated from these data. The subsite structure of Sfamy is characteristic of the active site of an endo-cleavage type enzyme, consisting of internal repulsive sites with the catalytic residues and external attractive sites. Moreover, the pKa values of the catalytic residues were calculated from the pH dependence plot of the kinetic parameter (kcat/Km). The amino acid residues which contribute to the subsite affinities and the catalytic activity of Sfamy are proposed and compared with those of Taka-amylase A.  相似文献   

20.
W L Mock  J T Tsay 《Biochemistry》1986,25(10):2920-2927
The substrate analogue 2-(1-carboxy-2-phenylethyl)-4-phenylazophenol is a potent competitive inhibitor of carboxypeptidase A. Upon ligation to the active site, the azophenol moiety undergoes a shift of pKa from a value of 8.76 to a value of 4.9; this provides an index of the Lewis acidity of the active site zinc ion. Examination of the pH dependence of Ki for the inhibitor shows maximum effectiveness in neutral solution (limiting Ki = 7.6 X 10(-7) M), with an increase in Ki in acid (pK1 = 6.16) and in alkaline solution (pK2 = 9.71, pK3 = 8.76). It is concluded that a proton-accepting enzymic functional group with the lower pKa (6.2) controls inhibitor binding, that ionization of this group is also manifested in the hydrolysis of peptide substrates (kcat/Km), and that the identity of this group is the water molecule that binds to the active site metal ion in the uncomplexed enzyme (H2OZn2+L3). Reverse protonation state inhibition is demonstrated, and conventional concepts regarding the mechanism of peptide hydrolysis by the enzyme are brought into question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号