首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study investigated the effects of spinal cord stimulation, neuromuscular blockade, or a combination of the two on neuromuscular development both during and after the period of naturally occurring motoneuron death in the chick embryo. Electrical stimulation of the spinal cord was without effect on motoneuron survival, synaptogenesis, or muscle properties. By contrast, activity blockade rescued motoneurons from cell death and altered synaptogenesis. A combination of spinal cord stimulation and activity blockade resulted in a marked increase in motoneuron death, and also altered synaptogenesis similar to that seen with activity blockade alone. Perturbation of normal nerve–muscle interactions by activity blockade may increase the vulnerability of developing motoneurons to excessive excitatory afferent input (spinal cord stimulation) resulting in excitotoxic-induced cell death. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Dipeptide mimetic of the brain-derived neurotrophic factor bis(N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide (working name GSB-106), which reproduces the homodimeric structure of BDNF and the beta-turn of its fourth loop, activates TrkB, AKT, and ERK, exhibits neuroprotective and antidepressant activity, and is able to stimulate neurogenesis in the hippocamp of stressed mice. Using Western blot hybridization and synaptophysin (synaptogenesis marker), we showed the ability of chronically administered GSB-106 to stimulate synaptogenesis, increasing the synaptic density in the hippocamp by 50%. Under the same conditions, GSB-106 exhibited antidepressant activity (decreased (by 18%) immobility of animals in Porsolt test), which may be associated with the stimulation of neurogenesis and synaptogenesis in the hippocamp.  相似文献   

3.
Unit activity of grafts of the septum and hippocampus, developing for 3–6 months in the anterior chamber of the eye was investigated in acute experiments on curarized orcerveau isolé rats. Whereas neurons in the transplanted septum had spontaneous activity of irregular, regular, or rhythmic bursting type, activity was absent in hippocampal grafts or consisted of very infrequent synchronized population sites. If grafts of the septum and hippocampus developed together and contact was established between them, the same types of activity developed in the hippocampus as in the septum. In many paired grafts spontaneous epileptic phenomena were observed; they were easily provoked also by electrical stimulation of one of the grafts. Superfusion with medium with a high Mg++ concentration and low Ca++ concentration abolished spontaneous activity in most neurons of hippocampal but not septal grafts, and also suppressed some of the epileptic phenomena, evidence of the leading role of the septum in the organization of spontaneous hippocampal unit activity.Institute of Biological Physics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 61–69, January–February, 1985.  相似文献   

4.
In the castrated rat, only testis taken in one to two week-old donors observed three months after sub-cutaneous isograft contain a well developed interstitial tissue and some seminiferous tubules with germinal cells. On the contrary in castrated mice, testicular grafts taken in adult animals show some Leydig cells and degenerating seminiferous tubules. These grafts permit the restoration of androgenic activity in previously castrated recipients.  相似文献   

5.
Embryonal tissue of the rat hippocampus was grafted into dorsolateral septum of the rabbit after its disconnection from the hippocampus. Extracellular investigation of the grafted neurones was performed in chronic conditions 6 to 7 weeks later. The grafted neurones had some characteristics typical of the rat hippocampus (low spontaneous activity and presence of complex spikes, low-frequency rhythmic modulation--below 1 Hz, significant increase of activity level after physostigmine injection). Weak periodic theta-modulation, observed in spontaneous activity of some grafted neurones, became more stable and appeared in additional units after injection of physostigmine, under the influence of electrical stimulation of the septum and reticular formation and in response to sensory stimulation of the host animal. Its frequency was 4.5-6.0 Hz, as in the host septum. Microelectrode investigation for 5-10 days provoked lymphocyte infiltration of the grafts, which was not observed in the grafts not subjected to such treatment.  相似文献   

6.
In cultured hippocampal neurons, synaptogenesis is largely independent of synaptic transmission, while several accounts in the literature indicate that synaptogenesis at cholinergic neuromuscular junctions in mammals appears to partially depend on synaptic activity. To systematically examine the role of synaptic activity in synaptogenesis at the neuromuscular junction, we investigated neuromuscular synaptogenesis and neurotransmitter release of mice lacking all synaptic vesicle priming proteins of the Munc13 family. Munc13-deficient mice are completely paralyzed at birth and die immediately, but form specialized neuromuscular endplates that display typical synaptic features. However, the distribution, number, size, and shape of these synapses, as well as the number of motor neurons they originate from and the maturation state of muscle cells, are profoundly altered. Surprisingly, Munc13-deficient synapses exhibit significantly increased spontaneous quantal acetylcholine release, although fewer fusion-competent synaptic vesicles are present and nerve stimulation-evoked secretion is hardly elicitable and strongly reduced in magnitude. We conclude that the residual transmitter release in Munc13-deficient mice is not sufficient to sustain normal synaptogenesis at the neuromuscular junction, essentially causing morphological aberrations that are also seen upon total blockade of neuromuscular transmission in other genetic models. Our data confirm the importance of Munc13 proteins in synaptic vesicle priming at the neuromuscular junction but indicate also that priming at this synapse may differ from priming at glutamatergic and gamma-aminobutyric acid-ergic synapses and is partly Munc13 independent. Thus, non-Munc13 priming proteins exist at this synapse or vesicle priming occurs in part spontaneously: i.e., without dedicated priming proteins in the release machinery.  相似文献   

7.
目前有研究证实microRNA参与了神经系统生长发育和生理功能的调控,它也与可塑性障碍性疾病、神经系统退行性疾病、神经系统肿瘤、脑血管疾病等重大疾病的发生发展相关.随着microRNA研究领域的发展,一些重大神经系统疾病的相关发病机制将有可能被阐释.  相似文献   

8.
Abstract: The effects of subcutaneous daily treatment with thyroxine on cell proliferation, differentiation, polyamines, and γ-aminobutyric acid metabolism in the rat retina were studied during the first 20 postnatal days. The retinal layers of the treated rats displayed an enhanced cell differentiation which reached its maximum 9–12 days from birth; but this effect stopped very quickly and was finished by the 20th postnatal day. Primarily there was an increase in ornithine decarboxylase activity which was accompanied by an increase in putrescine, spermidine, and spermine levels. S -Adenosylmethionine decarboxylase was induced later than ODC; corresponding with the enhanced synaptogenesis, glutamate decarboxylase increased 15-fold between the fourth and 15th days. Our data are consistent with the hypothesis that thyroxine may exert some of its effects by inducing the enzymes which regulate polyamine metabolism and synaptogenesis.  相似文献   

9.
Almost all the information that is needed to specify thalamocortical and neocortical wiring derives from patterned electrical activity induced by the environment. Wiring accuracy must be limited by the anatomical specificity of the cascade of events triggered by neural activity and culminating in synaptogenesis. We present a simple model of learning in the presence of plasticity errors. One way to achieve learning specificity is to build better synapses. We discuss an alternative, circuit-based, approach that only allows plasticity at connections that support highly selective correlations. This circuit resembles some of the more puzzling aspects of thalamocorticothalamic circuitry.  相似文献   

10.
Neurons in culture obtained from dissociated cerebral hemispheres of 8-day-old chick embryos showed measurable activities of galactosyl-, fucosyl-, and sialyl-transferases at the external surface of their plasma membrane. Important changes in these activities were observed during cell proliferation and maturation, in particular the surface fucosyltransferase activity, and/or the amount of intracellular fucosylated acceptors increased during synaptogenesis, between 3 and 5 days in culture (d.i.c.). A sodium dodecyl sulfate radioelectrophoretic analysis of the fucosylated neuronal acceptors labelled with [14C]fucose showed, during synaptogenesis, the high labelling of two protein bands of 116 and 50 X 10(3) daltons. The fucosylation of glycoconjugates occurred preferentially, in neurons, upon glycoproteins whereas in glial cell cultures glycolipids were more fucosylated. The reasons for such a difference are not yet understood but the results suggest that the surface fucosyltransferase activity and fucosylated proteins in particular may play a role during the synaptogenesis of neurons in culture.  相似文献   

11.

Background

Neuromuscular (NM) synaptogenesis is a tightly regulated process. We previously showed that in flies, Drosophila Nedd4 (dNedd4/dNedd4S) is required for proper NM synaptogenesis by promoting endocytosis of commissureless from the muscle surface, a pre-requisite step for muscle innervation. DNedd4 is an E3 ubiquitin ligase comprised of a C2-WW(x3)-Hect domain architecture, which includes several splice isoforms, the most prominent ones are dNedd4-short (dNedd4S) and dNedd4-long (dNedd4Lo).

Methodology/Principal Findings

We show here that while dNedd4S is essential for NM synaptogenesis, the dNedd4Lo isoform inhibits this process and causes lethality. Our results reveal that unlike dNedd4S, dNedd4Lo cannot rescue the lethality of dNedd4 null (DNedd4T121FS) flies. Moreover, overexpression of UAS-dNedd4Lo specifically in wildtype muscles leads to NM synaptogenesis defects, impaired locomotion and larval lethality. These negative effects of dNedd4Lo are ameliorated by deletion of two regions (N-terminus and Middle region) unique to this isoform, and by inactivating the catalytic activity of dNedd4Lo, suggesting that these unique regions, as well as catalytic activity, are responsible for the inhibitory effects of dNedd4Lo on synaptogenesis. In accord with these findings, we demonstrate by sqRT-PCR an increase in dNedd4S expression relative to the expression of dNedd4Lo during embryonic stages when synaptogenesis takes place.

Conclusion/Significance

Our studies demonstrate that splice isoforms of the same dNedd4 gene can lead to opposite effects on NM synaptogenesis.  相似文献   

12.
Narp is a neuronal immediate early gene that plays a role in excitatory synaptogenesis. Here, we report that native Narp in brain is part of a pentraxin complex that includes NP1. These proteins are covalently linked by disulfide bonds into highly organized complexes, and their relative ratio in the complex is dynamically dependent upon the neuron's activity history and developmental stage. Complex formation is dependent on their distinct N-terminal coiled-coil domains, while their closely homologous C-terminal pentraxin domains mediate association with AMPA-type glutamate receptors. Narp is substantially more effective in assays of cell surface cluster formation, coclustering of AMPA receptors, and excitatory synaptogenesis, yet their combined expression results in supraadditive effects. These studies support a model in which Narp can regulate the latent synaptogenic activity of NP1 by forming mixed pentraxin assemblies. This mechanism appears to contribute to both activity-independent and activity-dependent excitatory synaptogenesis.  相似文献   

13.
Calmodulin-dependent protein phosphatase: a developmental study   总被引:10,自引:0,他引:10  
E A Tallant  W Y Cheung 《Biochemistry》1983,22(15):3630-3635
Calmodulin-dependent protein phosphatase, one of the major calmodulin-binding proteins in bovine brain, dephosphorylates casein with a specific activity of 15 nmol mg-1 min-1 at 30 degrees C. The stimulation of phosphatase activity by calmodulin is reversed by ethylene glycol bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid or trifluoperazine, a calmodulin antagonist. Antibodies raised in rabbit against the phosphatase inhibit the enzyme activity. The levels of the protein in brain extracts from various animals, determined by a radioimmunoassay, range from 20 micrograms/g of tissue in chick and fish brains to 143 micrograms in rat cerebrum. The ontogeny of the phosphatase was studied in nervous tissues from rat and chick, animals in which synaptogenesis takes place at different times during their development. The levels of the protein increased significantly in rat cerebrum and cerebellum and in chick brain and retina during the periods corresponding to major synapse formation. In rat cerebrum, the enzyme appeared to be equally distributed between the cytosol and the particulate fraction; the level in both compartments increased during the major period of synapse formation. Thus, the development of calmodulin-dependent protein phosphatase closely parallels synaptogenesis, implicating a role in some synaptic function.  相似文献   

14.
Geranylgeranyltransferase I (GGT) is a prenyltransferase that mediates lipid modification of Rho small GTPases, such as Rho, Rac, and Cdc42, which are important for neuronal synaptogenesis. Although GGT is expressed in brain extensively, the function of GGT in central nerves system is largely unknown so far. We have previously demonstrated that GGT promotes the basal and neuronal activity and brain‐derived neurotrophic factor (BDNF)‐induced dendritic morphogenesis of cultured hippocampal neurons and cerebellar slices. This study is to explore the function and mechanism of GGT in neuronal synaptogenesis. We found that the protein level and activity of GGT gradually increased in rat hippocampus from P7 to P28 and subcellular located at synapse of neurons. The linear density of Synapsin 1 and post‐synaptic density protein 95 increased by over‐expression of GGT β, while reduced by inhibition or down‐regulation of GGT. In addition, GGT and its known substrate Rac was activated by BDNF, which promotes synaptogenesis in cultured hippocampal neurons. Furthermore, BDNF‐induced synaptogenesis was eliminated by GGT inhibition or down‐regulation, as well as by non‐prenylated Rac1 over‐expression. Together, our data suggested that GGT mediates BDNF‐induced neuronal synaptogenesis through Rac1 activation.  相似文献   

15.
Activity-dependent synaptogenesis in the adult Mammalian cortex   总被引:7,自引:0,他引:7  
Zito K  Svoboda K 《Neuron》2002,35(6):1015-1017
Recent electron microscopic studies provide evidence that the adult cortex generates new synapses in response to sensory activity and that these structural changes can occur rapidly, within 24 hr of sensory stimulation. Together with progress imaging synapses in vivo, the stage appears set for advances in understanding the dynamics and mechanisms of experience-dependent synaptogenesis.  相似文献   

16.
大鼠大脑皮层中钙调神经磷酸酶活力的时空变化   总被引:1,自引:0,他引:1  
以PNPP为底物测定了超离心制备的大鼠出生后早期和成年大脑皮层亚细胞各组分中钙调神经磷酸酶的活力。实验结果表明:(l)钙调神经磷酸酶活力广泛地存在于胞液和突触部分,并且各亚细胞组分有明显差异。成年大鼠大脑皮层中CaN活力相对最高水平是在突触体,突触质,胞液,重的和轻的突触膜部分。(2)大鼠大脑皮层突触体中CaN活力在出生后第2周和第3周出现高峰的平台期,这与突触发生的高峰期是一致的。在胞液和重的突触膜中CaN活力最高水平是在出生后的第7d,而在突触质和轻的突触膜中是在第20d。总之,这些发现证实,在脑发育期间,CaN活力是依照区域和时间性控制的,提示CaN可能参与了突触功能作用。  相似文献   

17.
Docosahexaenoylethanolamide, the structural analog of the endogenous cannabinoid receptor ligand anandamide, is synthesized from docosahexaenoic acid (DHA) in the brain. Although docosahexaenoylethanolamide binds weakly to cannabinoid receptors, it stimulates neurite growth, synaptogenesis and glutamatergic synaptic activity in developing hippocampal neurons at concentrations of 10–100 nM. We have previously proposed the term synaptamide for docosahexaenoylethanolamide to emphasize its potent synaptogenic activity and structural similarity to anandamide. Synaptamide is subjected to hydrolysis by fatty acid amide hydrolase, and can be oxygenated to bioactive metabolites. The brain synaptamide content is dependent on the dietary DHA intake, suggesting an endogenous mechanism whereby diets containing adequate amounts of omega-3 fatty acids improve synaptogenesis in addition to well-recognized anti-inflammatory effects.  相似文献   

18.
The rapid motility of axonal filopodia and dendritic spines is prevalent throughout the developing CNS, although the function of this motility remains controversial. Using two-photon microscopy, we imaged hippocampal mossy fiber axons in slice cultures and discovered that filopodial extensions are highly motile. Axonal filopodial motility is actin based and is downregulated with development, although it remains in mature cultures. This motility is correlated with free extracellular space yet is inversely correlated with contact with postsynaptic targets, indicating a potential role in synaptogenesis. Filopodial motility is differentially regulated by kainate receptors: synaptic stimulation of kainate receptors enhances motility in younger slices, but it inhibits it in mature slices. We propose that neuronal activity controls filopodial motility in a developmentally regulated manner, in order to establish synaptic contacts in a two-step process. A two-step model of synaptogenesis can also explain the opposite effects of neuronal activity on the motility of dendritic protrusions.  相似文献   

19.
DHA (docosahexaenoic acid, C22:6,n-3) has been shown to promote neurite growth and synaptogenesis in embryonic hippocampal neurons, supporting the importance of DHA known for hippocampus-related learning and memory function. In the present study, we demonstrate that DHA metabolism to DEA (N-docosahexaenoylethanolamide) is a significant mechanism for hippocampal neuronal development, contributing to synaptic function. We found that a fatty acid amide hydrolase inhibitor URB597 potentiates DHA-induced neurite growth, synaptogenesis and synaptic protein expression. Active metabolism of DHA to DEA was observed in embryonic day 18 hippocampal neuronal cultures, which was increased further by URB597. Synthetic DEA promoted hippocampal neurite growth and synaptogenesis at substantially lower concentrations in comparison with DHA. DEA-treated neurons increased the expression of synapsins and glutamate receptor subunits and exhibited enhanced glutamatergic synaptic activity, as was the case for DHA. The DEA level in mouse fetal hippocampi was altered according to the maternal dietary supply of n-3 fatty acids, suggesting that DEA formation is a relevant in vivo process responding to the DHA status. In conclusion, DHA metabolism to DEA is a significant biochemical mechanism for neurite growth, synaptogenesis and synaptic protein expression, leading to enhanced glutamatergic synaptic function. The novel DEA-dependent mechanism offers a new molecular insight into hippocampal neurodevelopment and function.  相似文献   

20.
Samuels BA  Hsueh YP  Shu T  Liang H  Tseng HC  Hong CJ  Su SC  Volker J  Neve RL  Yue DT  Tsai LH 《Neuron》2007,56(5):823-837
Synaptogenesis is a highly regulated process that underlies formation of neural circuitry. Considerable work has demonstrated the capability of some adhesion molecules, such as SynCAM and Neurexins/Neuroligins, to induce synapse formation in vitro. Furthermore, Cdk5 gain of function results in an increased number of synapses in vivo. To gain a better understanding of how Cdk5 might promote synaptogenesis, we investigated potential crosstalk between Cdk5 and the cascade of events mediated by synapse-inducing proteins. One protein recruited to developing terminals by SynCAM and Neurexins/Neuroligins is the MAGUK family member CASK. We found that Cdk5 phosphorylates and regulates CASK distribution to membranes. In the absence of Cdk5-dependent phosphorylation, CASK is not recruited to developing synapses and thus fails to interact with essential presynaptic components. Functional consequences include alterations in calcium influx. Mechanistically, Cdk5 regulates the interaction between CASK and liprin-alpha. These results provide a molecular explanation of how Cdk5 can promote synaptogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号