首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sphingolipids are a major component of membrane lipids and their metabolite sphingosine-1-phosphate (S1P) is a potent lipid mediator in animal cells. Recently, we have shown that the enzyme responsible for S1P production, sphingosine kinase (SphK), is stimulated by the phytohormone abscisic acid in guard cells of Arabidopsis (Arabidopsis thaliana) and that S1P is effective in regulating guard cell turgor. We have now characterized SphK from Arabidopsis leaves. SphK activity was mainly associated with the membrane fraction and phosphorylated predominantly the Delta4-unsaturated long-chain sphingoid bases sphingosine (Sph) and 4,8-sphingadienine, and to a lesser extent, the saturated long-chain sphingoid bases dihydrosphingosine and phytosphingosine (Phyto-Sph). 4-Hydroxy-8-sphingenine, which is a major sphingoid base in complex glycosphingolipids from Arabidopsis leaves, was a relatively poor substrate compared with the corresponding saturated Phyto-Sph. In contrast, mammalian SphK1 efficiently phosphorylated Sph, dihydrosphingosine, and 4,8-sphingadienine, but not the 4-hydroxylated long-chain bases Phyto-Sph and 4-hydroxy-8-sphingenine. Surface dilution kinetic analysis of Arabidopsis SphK with Sph presented in mixed Triton X-100 micelles indicated that SphK associates with the micellar surface and then with the substrate presented on the surface. In addition, measurements of SphK activity under different assay conditions combined with phylogenetic analysis suggest that multiple isoforms of SphK may be expressed in Arabidopsis. Importantly, we found that phytosphingosine-1-phosphate, similar to S1P, regulates stomatal apertures and that its action is impaired in guard cells of Arabidopsis plants harboring T-DNA null mutations in the sole prototypical G-protein alpha-subunit gene, GPA1.  相似文献   

2.
3.
Phosphatidic acid (PA) and phytosphingosine 1-phosphate (phyto-S1P) both are lipid messengers involved in plant response to abscisic acid (ABA). Our previous data indicate that PA binds to sphingosine kinase (SPHK) and increases its phyto-S1P-producing activity. To understand the cellular and physiological functions of the PA-SPHK interaction, we isolated Arabidopsis thaliana SPHK mutants sphk1-1 and sphk2-1 and characterized them, together with phospholipase Dα1 knock-out, pldα1, in plant response to ABA. Compared with wild-type (WT) plants, the SPHK mutants and pldα1 all displayed decreased sensitivity to ABA-promoted stomatal closure. Phyto-S1P promoted stomatal closure in sphk1-1 and sphk2-1, but not in pldα1, whereas PA promoted stomatal closure in sphk1-1, sphk2-1, and pldα1. The ABA activation of PLDα1 in leaves and protoplasts was attenuated in the SPHK mutants, and the ABA activation of SPHK was reduced in pldα1. In response to ABA, the accumulation of long-chain base phosphates was decreased in pldα1, whereas PA production was decreased in SPHK mutants, compared with WT. Collectively, these results indicate that SPHK and PLDα1 act together in ABA response and that SPHK and phyto-S1P act upstream of PLDα1 and PA in mediating the ABA response. PA is involved in the activation of SPHK, and activation of PLDα1 requires SPHK activity. The data suggest that SPHK/phyto-S1P and PLDα1A are co-dependent in amplification of response to ABA, mediating stomatal closure in Arabidopsis.  相似文献   

4.
The outs and the ins of sphingosine-1-phosphate in immunity   总被引:1,自引:0,他引:1  
The potent lipid mediator sphingosine-1-phosphate (S1P) is produced inside cells by two closely related kinases, sphingosine kinase 1 (SPHK1) and SPHK2, and has emerged as a crucial regulator of immunity. Many of the actions of S1P in innate and adaptive immunity are mediated by its binding to five G protein-coupled receptors, designated S1PR1-5, but recent findings have also identified important roles for S1P as a second messenger during inflammation. In this Review, we discuss recent advances in our understanding of the roles of S1P receptors and describe the newly identified intracellular targets of S1P that are crucial for immune responses. Finally, we discuss the therapeutic potential of new drugs that target S1P signalling and functions.  相似文献   

5.
Sphingolipids and their phosphorylated metabolites play crucial roles in intracellular signalling in animals, and evidence is emerging for analogous situations in fungi and plants. Central to this signalling pathway is the phosphorylation of the sphingoid long chain base, sphingosine, which yields sphingosine-1-phosphate. Until recently, the enzyme responsible for the biosynthesis of sphingosine was unknown, but the Delta(4)-long chain base desaturase that carries out this reaction has now been identified. Orthologues are present in animals, plants and fungi, raising the possibility of using reverse genetics to determine the contribution of sphingosine-1-phosphate to signalling networks.  相似文献   

6.
Sphingosine-1-phosphate is a sphingolipid metabolite involved in the regulation of cell proliferation in mammalian cells. The major route of sphingosine-1-phosphate degradation is through cleavage at the C2–3bond by sphingosine phosphate lyase. The recent identification of the first dihydrosphingosine/sphingosine phosphate lyase gene inSaccharomyces cerevisiaeestablishes that phosphorylated sphingoid base metabolism is conserved throughout evolution. Thedpl1Δ deletion mutant, which accumulates endogenous phosphorylated sphingoid bases, exhibits unregulated proliferation upon approach to stationary phase. The increased proliferation rate during respiratory growth was associated with failure to appropriately recruit cells into the G1phase of the cell cycle. Several genes were found to be overexpressed or prematurely expressed during nutrient deprivation in thedpl1Δ strain, including glucose-repressible genes and G1cyclins. These studies implicate a role forDPL1and phosphorylated sphingoid bases in the regulation of global responses to nutrient deprivation in yeast.  相似文献   

7.
8.
Arabidopsis thaliana acyl‐CoA‐binding protein 2 (ACBP2) is a stress‐responsive protein that is also important in embryogenesis. Here, we assign a role for ACBP2 in abscisic acid (ABA) signalling during seed germination, seedling development and the drought response. ACBP2 was induced by ABA and drought, and transgenic Arabidopsis overexpressing ACBP2 (ACBP2‐OXs) showed increased sensitivity to ABA treatment during germination and seedling development. ACBP2‐OXs also displayed improved drought tolerance and ABA‐mediated reactive oxygen species (ROS) production in guard cells, thereby promoting stomatal closure, reducing water loss and enhancing drought tolerance. In contrast, acbp2 mutant plants showed decreased sensitivity to ABA in root development and were more sensitive to drought stress. RNA analyses revealed that ACBP2 overexpression up‐regulated the expression of Respiratory Burst Oxidase Homolog D (AtrbohD) and AtrbohF, two NAD(P)H oxidases essential for ABA‐mediated ROS production, whereas the expression of Hypersensitive to ABA1 (HAB1), an important negative regulator in ABA signalling, was down‐regulated. In addition, transgenic plants expressing ACBP2pro:GUS showed beta‐glucuronidase (GUS) staining in guard cells, confirming a role for ACBP2 at the stomata. These observations support a positive role for ACBP2 in promoting ABA signalling in germination, seedling development and the drought response.  相似文献   

9.
Sphingosine kinase 1 (SK1) is one of the two known kinases, which generates sphingosine-1-phosphate (S1P), a potent endogenous lipid mediator involved in cell survival, proliferation, and cell-cell interactions. Activation of SK1 and intracellular generation of S1P were suggested to be part of the growth and survival factor-induced signaling, and overexpression of SK1 provoked cell tumorigenic transformation. Using a highly selective and sensitive LC-MS/MS approach, here we show that SK1 overexpression, but not SK2, in different primary cells and cultured cell lines results in predominant upregulation of the synthesis of dihydrosphingosine-1-phosphate (DHS1P) compared to S1P. Stable isotope pulse-labeling experiments in conjunction with LC-MS/MS quantitation of different sphingolipids demonstrated strong interference of overexpressed SK1 with the de novo sphingolipid biosynthesis by deviating metabolic flow of newly formed sphingoid bases from ceramide formation toward the synthesis of DHS1P. On the contrary, S1P biosynthesis was not directly linked to the de novo sphingoid bases transformations and was dependent on catabolic generation of sphingosine from complex sphingolipids. As a result of SK1 overexpression, migration and Ca2+-response of human pulmonary artery endothelial cells (HPAEC) to stimulation with external S1P, but not thrombin, was strongly impaired. In contrast, selective increase in intracellular content of DHS1P or S1P through the uptake and phosphorylation of corresponding sphingoid bases had no effect on S1P-induced signaling or facilitation of wound healing. Furthermore, infection of human bronchial epithelial cells (HBEpC) with RSV A-2 virus increased SK1-mediated synthesis of DHS1P and S1P, whereas TNF-alpha enhanced only S1P production in HPAEC. These findings uncover a new functional role for SK1, which can control survival/death (DHS1P-S1P/ceramides) balance by targeting sphingolipid de novo biosynthesis and selectively generating DHS1P at a metabolic step preceding ceramide formation.  相似文献   

10.
Drought is one of the most severe environmental stresses affecting plant growth and limiting crop production. Although many genes involved in adaptation to drought stress have been disclosed, the relevant molecular mechanisms are far from understood. This study describes an Arabidopsis gene, ASPG1 (ASPARTIC PROTEASE IN GUARD CELL 1), that may function in drought avoidance through abscisic acid (ABA) signalling in guard cells. Overexpression of the ASPG1 gene enhanced ABA sensitivity in guard cells and reduced water loss in ectopically overexpressing ASPG1 (ASPG1-OE) transgenic plants. In ASPG1-OE plants, some downstream targets in ABA and/or drought-signalling pathways were altered at various levels, suggesting the involvement of ASPG1 in ABA-dependent drought avoidance in Arabidopsis. By analysing the activities of several antioxidases including superoxide dismutase and catalase in ASPG1-OE plants, the existence was demonstrated of an effective detoxification system for drought avoidance in these plants. Analysis of ProASPG1-GUS lines showed a predominant guard cell expression pattern in various aerial tissues. Moreover, the protease activity of ASPG1 was characterized in vitro, and two aspartic acid sites, D180 and D379, were found to be key residues for ASPG1 aspartic protease activity in response to ABA. In summary, these findings suggest that functional ASPG1 may be involved in ABA-dependent responsiveness and that overexpression of the ASPG1 gene can confer drought avoidance in Arabidopsis.  相似文献   

11.
鞘磷脂是哺乳动物细胞质膜的主要成分之一,在其代谢过程中,鞘氨醇激酶(sphingosine kinase, SPHK)是一个关键性的调节酶.鞘磷脂代谢产物鞘鞍醇经SPHK磷酸化作用产生的鞘氨醇-1-磷酸(S1P)是一种具有生物活性的脂类,参与调节骨骼、神经、免疫、血液系统等多种组织细胞的生物学过程.本文阐述了SPHK/S1P信号途径相关分子,并综述了SPHK/S1P通过调节骨组织细胞的形态结构、增殖、迁移、分化形成及凋亡等功能,进而调节骨重建平衡过程的生物学效应及其机制.  相似文献   

12.
Sphingolipids are known to interfere with calcium-based signalling pathways. Here we report that these compounds modulate nuclear calcium signalling in tobacco BY-2 cells. Nuclear protein kinase activity phosphorylated endogenous sphingoid long-chain bases (LCBs), suggesting that LCBs are actively metabolized in the nucleus of tobacco BY-2 cells. The Delta4-unsaturated LCB D-erythro-sphingosine and the saturated LCB D-ribo-phytosphingosine elicited increases in free calcium in the nucleus in a dose-dependent and structure-related manner. However, neither sphingosine-1-phosphate nor C2-ceramide was able to stimulate nuclear calcium changes. N-,N-Dimethyl-D-erythro-sphingosine, a structural analogue of D-erythro-sphingosine, was the most efficient LCB so far tested in eliciting nuclear calcium changes both in intact tobacco BY-2 cells and in isolated nuclei. TRP channel inhibitors prevent the effect of DMS, suggesting that LCBs may activate TRP-like channels located on the inner nuclear membrane Collectively, the obtained data show that nuclei respond to LCBs on their own independently of the cytosolic compartment.  相似文献   

13.
There is accumulating evidence that activation of sphingosine kinase 1 (SPHK1) is an important element in intracellular signalling cascades initiated by stimulation of multiple receptors, including certain growth factor, cytokine, and also G-protein coupled receptors. We here report that stimulation of the lung epithelial cell line A549 by thrombin leads to transient increase of SPHK1 activity and elevation of intracellular sphingosine-1-phosphate (S1P); abrogation of this stimulation by SPHK1-specific siRNA, pharmacological inhibition, or expression of a dominant-negative SPHK1 mutant blocks the response to thrombin, as measured by secretion of MCP-1, IL-6, IL-8, and PGE2. Using selective stimulation of proteinase-activated receptors (PARs) a specific involvement of SPHK1 in the PAR-1 induced responses in A549 cell, including activation of NFκB, was evident, while PAR-2 and PAR-4 responses were independent of SPHK1. Moreover, PAR-1 or thrombin-induced cytokine production and adhesion factor expression of human umbilical vein endothelial cells was also seen to depend on SPHK1. Using dermal microvascular endothelial cells from SPHK1-deficient mice, we showed that absence of the enzyme abrogates MCP-1 production induced in these cells upon treatment with thrombin or PAR-1 activating peptide. We propose SPHK1 inhibition as a novel way to block PAR-1 mediated signalling, which could be useful in treatment of a number of diseases, in particular in atherosclerosis.  相似文献   

14.
Sphingosine kinase (SPHK) catalyzes sphingosine phosphorylation to form a bioactive lipid mediator, sphingosine-1-phosphate (S1P). In the current study, we report the presence of SPHK-1 in mouse spermatozoa. SPHK-1 was localized to the acrosomes of spermatozoa, and its expression was proven by RT-PCR and Western blot analysis. SPHK activity of mouse spermatozoa was 18.1 pmol/min/mg protein. Furthermore, we identified the presence of the S1P receptors S1P1, S1P2, S1P3, and S1P5, in mouse spermatozoa by RT-PCR. These results suggest that S1P produced by SPHK-1 would play a role in the acrosomal reaction through S1P receptors.  相似文献   

15.
Fumonisin B1 induces cytotoxicity in sensitive cells by inhibiting ceramide synthase due to its structural similarity to the long-chain backbones of sphingolipids. The resulting accumulation of sphingoid bases has been established as a mechanism for fumonisin B1 cytotoxicity. We found that despite the accumulation of sphinganine, human embryonic kidney (HEK-293) cells are resistant to fumonisin B1 toxicity; 25 microM fumonisin B1 exposure for 48 h did not increase apoptosis in these cells, while it did so in sensitive porcine kidney epithelial (LLC-PK1) cells. In this study, DL-threo-dihydrosphingosine, the sphingosine kinase inhibitor (SKI), considerably increased the sensitivity of HEK-293 cells to fumonisin B1. Treatment of these cells with 25 microM fumonisin B1 and 2.5 microM SKI increased apoptosis. Sphingoid bases, sphinganine or sphingosine, added to cell cultures induced apoptosis by themselves and their effects were potentiated by SKI or fumonisin B1. Addition of physiological amounts of sphingosine-1-phosphate prevented the toxic effects induced by SKI inhibition and fumonisin B1. Results indicated that HEK-293 cells are resistant to fumonisin B1 due to rapid formation of sphingosine-1-phosphate that imparts survival properties. Taken together, these findings suggest that sphingoid base metabolism by sphingosine kinase may be a critical event in rendering the HEK-293 cells relatively resistant to fumonisin B1-induced apoptosis.  相似文献   

16.
In the search for bioactive sphingosine 1-phosphate (S1P) receptor ligands, a series of 2-amino-2-heterocyclic-propanols were synthesized. These molecules were discovered to be substrates of human-sphingosine kinases 1 and 2 (SPHK1 and SPHK2). When phosphorylated, the resultant phosphates showed varied activities at the five sphingosine-1-phosphate (S1P) receptors (S1P1–5). Agonism at S1P1 was displayed in vivo by induction of lymphopenia. A stereochemical preference of the quaternary carbon was crucial for phosphorylation by the kinases and alters binding affinities at the S1P receptors. Oxazole and oxadiazole compounds are superior kinase substrates to FTY720, the prototypical prodrug immunomodulator, fingolimod (FTY720). The oxazole-derived structure was the most active for human SPHK2. Imidazole analogues were less active substrates for SPHKs, but more potent and selective agonists of the S1P1 receptor; additionally, the imidazole class of compounds rendered mice lymphopenic.  相似文献   

17.
Sphingolipid-mediated Signalling in Plants   总被引:3,自引:2,他引:1  
A plethora of biological effects, ranging from cellular survivalto apoptosis, has been assigned to sphingolipids and, in particular,to the sphingolipid metabolites ceramide, sphingosine and sphingosine-1-phosphate.One aspect of sphingolipid biology that is currently attractinga great deal of interest in animals and yeast is their rolein cell signalling. In contrast, much less is known about sphingolipidsin plants, although available information suggests that thesecompounds may also fulfil important signalling roles. Thereare suggestions that sphingolipid metabolites may be involvedin diverse processes including pathogenesis, membrane stabilityand the response to drought. Here, we review current informationon the role of sphingolipid metabolites and highlight theiremerging roles in plant signalling. Copyright 2001 Annals ofBotany Company Sphingolipid, cerebrosides, glucosylceramides, sphingosine-1-phosphate, pathogenesis, stomata, guard cells, calcium, signal transduction, cell signalling  相似文献   

18.
19.

Main conclusion

Phyto-S1P and S1P induced stomatal closure in epidermis of pea ( Pisum sativum ) by raising the levels of NO and pH in guard cells. Phosphosphingolipids, such as phytosphingosine-1-phosphate (phyto-S1P) and sphingosine-1-phosphate (S1P), are important signaling components during drought stress. The biosynthesis of phyto-S1P or S1P is mediated by sphingosine kinases (SPHKs). Although phyto-S1P and S1P are known to be signaling components in higher plants, their ability to induce stomatal closure has been ambiguous. We evaluated in detail the effects of phyto-S1P, S1P and SPHK inhibitors on signaling events leading to stomatal closure in the epidermis of Pisum sativum. Phyto-S1P or S1P induced stomatal closure, along with a marked rise in nitric oxide (NO) and cytoplasmic pH of guard cells, as in case of ABA. Two SPHK inhibitors, DL-threo dihydrosphingosine and N’,N’-dimethylsphingosine, restricted ABA-induced stomatal closure and prevented the increase of NO or pH by ABA. Modulators of NO or pH impaired both stomatal closure and increase in NO or pH by phyto-S1P/S1P. The stomatal closure by phyto-S1P/S1P was mediated by phospholipase D and phosphatidic acid (PA). When present, PA elevated the levels of pH, but not NO of guard cells. Our results demonstrate that stomatal closure induced by phyto-S1P and S1P depends on rise in pH as well as NO of guard cells. A scheme of signaling events initiated by phyto-S1P/S1P, and converging to cause stomatal closure, is proposed.
  相似文献   

20.
Sugars regulate important processes and affect the expression of many genes in plants. Characterization of Arabidopsis (Arabidopsis thaliana) mutants with altered sugar sensitivity revealed the function of abscisic acid (ABA) signalling in sugar responses. However, the exact interaction between sugar signalling and ABA is obscure. Therefore ABA deficient plants with constitutive ABI4 expression (aba2-1/35S::ABI4) were generated. Enhanced ABI4 expression did not rescue the glucose insensitive (gin) phenotype of aba2 seedlings indicating that other ABA regulated factors are essential as well. Interestingly, both glucose and ABA treatment of Arabidopsis seeds trigger a post-germination seedling developmental arrest. The glucose-arrested seedlings had a drought tolerant phenotype and showed glucose-induced expression of ABSCISIC ACID INSENSITIVE3 (ABI3), ABI5 and LATE EMBRYOGENESIS ABUNDANT (LEA) genes reminiscent of ABA signalling during early seedling development. ABI3 is a key regulator of the ABA-induced arrest and it is shown here that ABI3 functions in glucose signalling as well. Multiple abi3 alleles have a glucose insensitive (gin) phenotype comparable to that of other known gin mutants. Importantly, glucose-regulated gene expression is disturbed in the abi3 background. Moreover, abi3 was insensitive to sugars during germination and showed sugar insensitive (sis) and sucrose uncoupled (sun) phenotypes. Mutant analysis further identified the ABA response pathway genes ENHANCED RESPONSE TO ABA1 (ERA1) and ABI2 as intermediates in glucose signalling. Hence, three previously unidentified sugar signalling genes have been identified, showing that ABA and glucose signalling overlap to a larger extend than originally thought. Bas J. W. Dekkers and Jolanda A. M. J. Schuurmans contributed equally to this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号