首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many proteins are attached to the cell surface via a conserved post-translational modification, the glycosylphosphatidylinositol (GPI) anchor. GPI-anchored proteins are functionally diverse, but one of their most striking features is their association with lipid microdomains, which consist mainly of sphingolipids and sterols. GPI-anchored proteins modulate various biological functions when they are incorporated into these specialized domains. The biosynthesis of GPI and its attachment to proteins occurs in the endoplasmic reticulum. The lipid moieties of GPI-anchored proteins are further modified during their transport to the cell surface, and these remodeling processes are essential for the association of proteins with lipid microdomains. Recently, several genes required for GPI lipid remodeling have been identified in yeast and mammalian cells. In this review, we describe the pathways for lipid remodeling of GPI-anchored proteins in yeast and mammalian cells, and discuss how lipid remodeling affects the association of GPI-anchored proteins with microdomains in cellular events.  相似文献   

2.
Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol(GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. Whereas the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan(AG) O-glycans. The impor tance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins(GAPs) further supports their contribution to diverse biological processes, occurring at the interface of the plasma membrane and cell wall including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins, in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall, and their potential to transduce the signal into the protoplast and, thereby, activate signa transduction pathways.  相似文献   

3.
Glycosylphosphatidylinositol (GPI) anchoring of proteins is a conserved post-translational modification in eukaryotes. In mammalian cells, approximately 150 proteins on the plasma membrane are attached to the cell surface by GPI anchors, which confer specific properties on proteins, such as association with membrane microdomains. The structures of lipid and glycan moieties on GPI anchors are remodeled during biosynthesis and after attachment to proteins. The remodeling processes are critical for transport and microdomain-association of GPI-anchored proteins. Here, we describe the structural remodeling of GPI anchors and genes required for the processes in mammals, yeast, and trypanosomes.  相似文献   

4.
GPI-anchored proteins and lipid rafts   总被引:2,自引:0,他引:2  
Several proteins are anchored to membranes via a post-translational lipid modification, the glycosylphosphatidylinositol (GPI) anchor. In mammals and other vertebrates, GPI-anchored proteins have been found in almost all tissues and cells examined. Several studies have provided significant insight into the functions of this ubiquitous modification. An intriguing relevant feature of GPI-anchored proteins is their association with lipid rafts, specialized regions of elevated cholesterol and sphingolipid content, that are present within most cell membranes. In addition to the structure and biosynthesis of the GPI-anchor, recent researches have focused on its molecular interaction with lipid rafts and the biological meaning of such interaction. The aim of this review is to examine the emerging evidences of association between lipid rafts and GPI-anchored proteins, and their relationship with the modulation of important cellular functions such as protein/lipid sorting, signaling mechanisms and with human disease.  相似文献   

5.
Glycosylphosphatidylinositol (GPI) anchor biosynthesis takes place in the endoplasmic reticulum (ER). After protein attachment, the GPI anchor is transported to the Golgi where it undergoes fatty acid remodeling. The ER exit of GPI-anchored proteins is controlled by glycan remodeling and p24 complexes act as cargo receptors for GPI anchor sorting into COPII vesicles. In this study, we have characterized the lipid profile of mammalian cell lines that have a defect in GPI anchor biosynthesis. Depending on which step of GPI anchor biosynthesis the cells were defective, we observed sphingolipid changes predominantly for very long chain monoglycosylated ceramides (HexCer). We found that the structure of the GPI anchor plays an important role in the control of HexCer levels. GPI anchor-deficient cells that generate short truncated GPI anchor intermediates showed a decrease in very long chain HexCer levels. Cells that synthesize GPI anchors but have a defect in GPI anchor remodeling in the ER have a general increase in HexCer levels. GPI-transamidase-deficient cells that produce no GPI-anchored proteins but generate complete free GPI anchors had unchanged levels of HexCer. In contrast, sphingomyelin levels were mostly unaffected. We therefore propose a model in which the transport of very long chain ceramide from the ER to Golgi is regulated by the transport of GPI anchor molecules.  相似文献   

6.
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the C-terminal end that serves as an anchor to the plasma membrane and could be responsible for the presence of GPI proteins in rafts, a type of functionally important membrane microdomain enriched in sphingolipids and cholesterol. In order to understand better how GPI proteins partition into rafts, the insertion of the GPI-anchored alkaline phosphatase (AP) was studied in real-time using atomic force microscopy. Supported phospholipid bilayers made of a mixture of sphingomyelin–dioleoylphosphatidylcholine containing cholesterol (Chl+) or not (Chl–) were used to mimic the fluid-ordered lipid phase separation in biological membranes. Spontaneous insertion of AP through its GPI anchor was observed inside both Chl+ and Chl– lipid ordered domains, but AP insertion was markedly increased by the presence of cholesterol.  相似文献   

7.
Glycosylphosphatidylinositol (GPI) anchoring of proteins to the plasma membrane is a common mechanism utilized by all eukaryotes including mammals, yeast, and the Trypanosoma brucei parasite. We have previously shown that in mammals phenanthroline (PNT) blocks the attachment of phosphoethanolamine (P-EthN) groups to mannose residues in GPI anchor intermediates, thus preventing the synthesis of mammalian GPI anchors. Therefore, PNT is likely to inhibit GPI-phosphoethanolamine transferases (GPI-PETs). Here we report that in yeast, PNT also inhibits the synthesis of the GPI anchor as well as GPI-anchored proteins. Interestingly, the mechanism of PNT inhibition of GPI synthesis is different from that of YW3548, another putative GPI-PET inhibitor. In contrast to mammals and yeast, the synthesis of GPIs in T. brucei is not affected by PNT. Our results indicate that the T. brucei GPI-PET could be a potential target for antiparasitic drugs.  相似文献   

8.
A wide variety of proteins are tethered by a glycosylphosphatidylinositol (GPI) anchor to the extracellular face of eukaryotic plasma membranes, where they are involved in a number of functions ranging from enzymatic catalysis to adhesion. The exact function of the GPI anchor has been the subject of much speculation. It appears to act as an intracellular signal targeting proteins to the apical surface in polarized cells. GPI-anchored proteins are sorted into sphingolipid- and cholesterol-rich microdomains, known as lipid rafts, before transport to the membrane surface. Their localization in raft microdomains may explain the involvement of this class of proteins in signal transduction processes. Substantial evidence suggests that GPI-anchored proteins may interact closely with the bilayer surface, so that their functions may be modulated by the biophysical properties of the membrane. The presence of the anchor appears to impose conformational restraints, and its removal may alter the catalytic properties and structure of a GPI-anchored protein. Release of GPI-anchored proteins from the cell surface by specific phospholipases may play a key role in regulation of their surface expression and functional properties. Reconstitution of GPI-anchored proteins into bilayers of defined phospholipids provides a powerful tool with which to explore the interactions of these proteins with the membrane and investigate how bilayer properties modulate their structure, function, and cleavage by phospholipases.  相似文献   

9.
Anchoring of proteins to membranes by glycosylphosphatidylinositols (GPIs) is ubiquitous among all eukaryotes and heavily used by parasitic protozoa. GPI is synthesized and transferred en bloc to form GPI- anchored proteins. The key enzyme in this process is a putative GPI:protein transamidase that would cleave a peptide bond near the COOH terminus of the protein and attach the GPI by an amide linkage. We have identified a gene, GAA1, encoding an essential ER protein required for GPI anchoring. gaal mutant cells synthesize the complete GPI anchor precursor at nonpermissive temperatures, but do not attach it to proteins. Overexpression of GAA1 improves the ability of cells to attach anchors to a GPI-anchored protein with a mutant anchor attachment site. Therefore, Gaa1p is required for a terminal step of GPI anchor attachment and could be part of the putative GPI:protein transamidase.  相似文献   

10.
Glycosyl-phosphatidylinositol (GPI) is a complex glycolipid structure that acts as a membrane anchor for many cell-surface proteins of eukaryotes. GPI-anchored proteins are particularly abundant in protozoa such as Trypanosoma brucei, Leishmania major, Plasmodium falciparum and Toxoplasma gondii, and represent the major carbohydrate modification of many cell-surface parasite proteins. Although the GPI core glycan is conserved in all organisms, many differences in additional modifications to GPI structures and biosynthetic pathways have been reported. Therefore, the characteristics of GPI biosynthesis are currently being explored for the development of parasite-specific inhibitors. In vitro and in vivo studies using sugars and substrate analogues as well as natural compounds have shown that it is possible to interfere with GPI biosynthesis at different steps in a species-specific manner. Here we review the recent and promising progress in the field of GPI inhibition.  相似文献   

11.
The glycosylphosphatidylinositol (GPI) anchor is a lipid and glycan modification added to the C terminus of certain proteins in the endoplasmic reticulum by the activity of a multiple subunit enzyme complex known as the GPI transamidase (GPIT). Several subunits of GPIT have increased expression levels in breast carcinoma. In an effort to identify GPI-anchored proteins and understand the possible role of these proteins in breast cancer progression, we employed a combination of strategies. First, alpha toxin from Clostridium septicum was used to capture GPI-anchored proteins from human breast cancer tissues, cells, and serum for proteomic analysis. We also expressed short interfering RNAs targeting the expression of the GPAA1 and PIGT subunits of GPIT in breast cancer cell lines to identify proteins in which membrane localization is dependent on GPI anchor addition. Comparative membrane proteomics using nano-ESI-RPLC-MS/MS led to the discovery of several new potential diagnostic and therapeutic targets for breast cancer. Furthermore, we provide evidence that increased levels of GPI anchor addition in malignant breast epithelial cells promotes the dedifferentiation of malignant breast epithelial cells in part by increasing the levels of cell surface markers associated with mesenchymal stem cells.  相似文献   

12.
Glycosylphosphatidylinositol (GPI)-anchored proteins have been identified in all eukaryotes. In fungi, structural and biosynthetic studies of GPIs have been restricted to the yeast Saccharomyces cerevisiae. In this article, four GPI-anchored proteins were purified from a membrane preparation of the human filamentous fungal pathogen Aspergillus fumigatus. Using new methodology applied to western blot protein bands, the GPI structures were characterized by ES-MS, fluorescence labeling, HPLC, and specific enzymatic digestions. The phosphatidylinositol moiety of the A. fumigatus GPI membrane anchors was shown to be an inositol-phosphoceramide containing mainly phytosphingosine and monohydroxylated C24:0 fatty acid. In constrast to yeast, only ceramide was found in the GPI anchor structures of A. fumigatus, even for Gel1p, a homolog of Gas1p in S. cerevisiae that contains diacylglycerol. The A. fumigatus GPI glycan moiety is mainly a linear pentomannose structure linked to a glucosamine residue: Manalpha1-3Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4GlcN.  相似文献   

13.
Most proteins that coat the surface of the extracellular forms of the human malaria parasite Plasmodium falciparum are attached to the plasma membrane via glycosylphosphatidylinositol (GPI) anchors. These proteins are exposed to neutralizing antibodies, and several are advanced vaccine candidates. To identify the GPI-anchored proteome of P. falciparum we used a combination of proteomic and computational approaches. Focusing on the clinically relevant blood stage of the life cycle, proteomic analysis of proteins labeled with radioactive glucosamine identified GPI anchoring on 11 proteins (merozoite surface protein (MSP)-1, -2, -4, -5, -10, rhoptry-associated membrane antigen, apical sushi protein, Pf92, Pf38, Pf12, and Pf34). These proteins represent approximately 94% of the GPI-anchored schizont/merozoite proteome and constitute by far the largest validated set of GPI-anchored proteins in this organism. Moreover MSP-1 and MSP-2 were present in similar copy number, and we estimated that together these proteins comprise approximately two-thirds of the total membrane-associated surface coat. This is the first time the stoichiometry of MSPs has been examined. We observed that available software performed poorly in predicting GPI anchoring on P. falciparum proteins where such modification had been validated by proteomics. Therefore, we developed a hidden Markov model (GPI-HMM) trained on P. falciparum sequences and used this to rank all proteins encoded in the completed P. falciparum genome according to their likelihood of being GPI-anchored. GPI-HMM predicted GPI modification on all validated proteins, on several known membrane proteins, and on a number of novel, presumably surface, proteins expressed in the blood, insect, and/or pre-erythrocytic stages of the life cycle. Together this work identified 11 and predicted a further 19 GPI-anchored proteins in P. falciparum.  相似文献   

14.
《The Journal of cell biology》1995,130(6):1333-1344
Glycosylphosphatidylinositol (GPI)-anchored membrane proteins are synthesized by the posttranslational attachment of a preformed glycolipid to newly made glycoproteins. alpha-Agglutinin is a GPI- anchored glycoprotein that gets expressed at the cell surface of MAT alpha cells after induction with type a mating factor. Mutants affecting the biosynthesis of GPI anchors were obtained by selecting for the absence of alpha-agglutinin from the cell wall after induction with a-factor at 37 degrees C. 10 recessive mutants were grouped into 6 complementation classes, gpi4 to gpi9. Mutants are considered to be deficient in the biosynthesis of GPI anchors, since each mutant accumulates an abnormal, incomplete GPI glycolipid containing either zero, two, or four mannoses. One mutant accumulates a complete precursor glycolipid, suggesting that it might be deficient in the transfer of complete precursor lipids to proteins. When labeled with [2- 3H]inositol, mutants accumulate reduced amounts of radiolabeled GPI- anchored proteins, and the export of the GPI-anchored Gas1p out of the ER is severely delayed in several mutant strains. On the other hand, invertase and acid phosphatase are secreted by all but one mutant. All mutants show an increased sensitivity to calcofluor white and hygromycin B. This suggests that GPI-anchored proteins are required for the integrity of the yeast cell wall.  相似文献   

15.
Glycosylphoshatidylinositol (GPI) anchors are remodeled during their transport to the cell surface. Newly synthesized proteins are transferred to a GPI anchor, consisting of diacylglycerol with conventional C16 and C18 fatty acids, whereas the lipid moiety in mature GPI-anchored proteins is exchanged to either diacylglycerol containing a C26:0 fatty acid in the sn-2 position or ceramide in Saccharomyces cerevisiae. Here, we report on PER1, a gene encoding a protein that is required for the GPI remodeling pathway. We found that GPI-anchored proteins could not associate with the detergent-resistant membranes in per1Delta cells. In addition, the mutant cells had a defect in the lipid remodeling from normal phosphatidylinositol (PI) to a C26 fatty acid-containing PI in the GPI anchor. In vitro analysis showed that PER1 is required for the production of lyso-GPI, suggesting that Per1p possesses or regulates the GPI-phospholipase A2 activity. We also found that human PERLD1 is a functional homologue of PER1. Our results demonstrate for the first time that PER1 encodes an evolutionary conserved component of the GPI anchor remodeling pathway, highlighting the close connection between the lipid remodeling of GPI and raft association of GPI-anchored proteins.  相似文献   

16.
17.
We have used artificial phosphatidylethanolamine-polyethylene glycol (PE-PEG)-anchored proteins, incorporated into living mammalian cells, to evaluate previously proposed roles for ordered lipid 'raft' domains in the post-endocytic trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins in CHO and BHK cells. In CHO cells, endocytosed PE-PEG protein conjugates colocalized strongly with the internalized GPI-anchored folate receptor, concentrating in the endosomal recycling compartment, regardless of the structure of the hydrocarbon chains of the PE-PEG 'anchor'. However, internalized PE-PEG protein conjugates with long-chain saturated anchors recycled to the plasma membrane at a slow rate comparable to that measured for the GPI-anchored folate receptor, whereas conjugates with short-chain or unsaturated anchors recycled at a faster rate similar to that observed for the transferrin receptor. These findings support the proposal (Mayor et al. Cholesterol-dependent retention of GPI-anchored proteins in endosomes. EMBO J 1998;17:4628-4638) that the slow recycling of GPI proteins in CHO cells rests on their affinity for ordered lipid domains. In BHK cells, internalized PE-PEG protein conjugates with either saturated or unsaturated 'anchors' colocalized strongly with simultaneously endocytosed folate receptor and, like the folate receptor, gradually accumulated in late endosomes/lysosomes. These latter findings do not support previous suggestions that the sorting of GPI proteins to late endosomes in BHK cells depends on their association with lipid rafts.  相似文献   

18.
Normal cellular prion protein (PrP(C)) and decay-accelerating factor (DAF) are glycoproteins linked to the cell surface by glycosylphosphatidylinositol (GPI) anchors. Both PrP(C) and DAF reside in detergent insoluble complex that can be isolated from human peripheral blood mononuclear cells. However, these two GPI-anchored proteins possess different cell biological properties. The GPI anchor of DAF is markedly more sensitive to cleavage by phosphatidylinositol-specific phospholipase C (PI-PLC) than that of PrP(C). Conversely, PrP(C) has a shorter cell surface half-life than DAF, possibly due to the fact that PrP(C) but not DAF is shed from the cell surface. This is the first demonstration that on the surface of the same cell type two GPI-anchored proteins differ in their cell biological properties.  相似文献   

19.
Glycosyl-phosphatidylinositol: a versatile anchor for cell surface proteins   总被引:32,自引:0,他引:32  
M G Low 《FASEB journal》1989,3(5):1600-1608
  相似文献   

20.
Glycosylphosphatidylinositol (GPI), covalently attached to many eukaryotic proteins, not only acts as a membrane anchor but is also thought to be a sorting signal for GPI-anchored proteins that are associated with sphingolipid and sterol-enriched domains. GPI anchors contain a core structure conserved among all species. The core structure is synthesized in two topologically distinct stages on the leaflets of the endoplasmic reticulum (ER). Early GPI intermediates are assembled on the cytoplasmic side of the ER and then are flipped into the ER lumen where a complete GPI precursor is synthesized and transferred to protein. The flipping process is predicted to be mediated by a protein referred as flippase; however, its existence has not been proven. Here we show that yeast Arv1p is an important protein required for the delivery of an early GPI intermediate, GlcN-acylPI, to the first mannosyltransferase of GPI synthesis in the ER lumen. We also provide evidence that ARV1 deletion and mutations in other proteins involved in GPI anchor synthesis affect inositol phosphorylceramide synthesis as well as the intracellular distribution and amounts of sterols, suggesting a role of GPI anchor synthesis in lipid flow from the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号