首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 730 毫秒
1.
Exposure of rabbit pulmonary arterial smooth muscle cells to the calcium ionophore A23187, dose-dependently stimulates arachidonic acid (AA) release and phospholipase A2 (PLA2) activity. The protein kinase C (PKC) inhibitor, sphingosine does not prevents AA release and PLA2 activity caused by low doses of A23187. In contrast, sphingosine markedly prevents AA release and PLA2 activity caused by higher doses of A23187. PKC activity profile indicates that treatment of the cells with low doses of A23187 does not cause significant alteration of PKC translocation from cytosol to membrane whereas higher concentrations of the ionophore dose-dependently enhance PKC translocation from cytosol to membrane in the smooth muscle cells.  相似文献   

2.
Phospholipid remodeling resulting in arachidonic acid (AA) release and metabolism in human neutrophils stimulated by calcium ionophore A23187 has been extensively studied, while data obtained using physiologically relevant stimuli is limited. Opsonized zymosan and immune complexes induced stimulus-specific alterations in lipid metabolism that were different from those induced by A23187. [3H]AA release correlated with activation of phospholipase A2 (PLA2) but not with cellular activation as indicated by superoxide generation. The latter correlated more with calcium-dependent phospholipase C (PLC) activation and elevation of cellular diacylglycerol (DAG) levels. When cells that had been allowed to incorporate [3H]AA were stimulated with A23187, large amounts of labeled AA was released, most of which was metabolized to 5-HETE and leukotriene B4. Stimulation with immune complexes also resulted in the release of [3H]AA but this released radiolabeled AA was not metabolized. In contrast, stimulation with opsonized zymosan induced no detectable release of [3H]AA. Analysis of [3H]AA-labeled lipids in resting cells indicated that the greatest amount of label was incorporated into the phosphatidylinositol (PI) pool, followed closely by phosphatidylcholine and phosphatidylserine, while little [3H]AA was detected in the phosphatidylethanolamine pool. During stimulation with A23187, a significant decrease in labeled PI occurred and labeled free fatty acid in the pellet increased. With immune complexes, only a small decrease was seen in labeled PI while the free fatty acid in the pellets was unchanged. In contrast, opsonized zymosan decreased labeled PI, and increased labeled DAG. Phospholipase activity in homogenates from human neutrophils was also assayed. A23187 and immune complexes, but not zymosan, significantly enhanced PLA2 activity in the cell homogenates. On the other hand, PLC activity was enhanced by zymosan and immune complexes. Stimulated increases in PLC activity correlated with enhanced superoxide generation induced by the stimulus.  相似文献   

3.
Primary cultures of endometrial glands and stromal cells were labelled with [14C]-arachidonic acid for 4 h before exposure to either the calcium ionophore, A23187 (which activates phospholipase A2 (PLA2) by increasing intracellular calcium concentrations) or sodium fluoride (which activates a G-protein). Calcium ionophore (0.5-50 mumol/l) stimulated a dose- and time-dependent release of arachidonic acid from endometrial glands. Incubation with ionophore (10 mumol/l) for 1 h released 22% of the incorporated arachidonic acid. There was a corresponding decrease in phospholipids and no loss from triglycerides. Stromal cells were unresponsive to ionophore. Fluoride (10 mmol/l) stimulated a release of arachidonic acid from stromal cells and endometrial glands (6.5% of the total arachidonic acid incorporated). In stromal cells, arachidonic acid was released from triglycerides in Day-1 cultures and from phospholipids in Day-2 cultures. In both Day-1 and Day-2 cultures of endometrial glands, arachidonic acid was released from phospholipids, but not from triglycerides. Among the phospholipids, phosphatidylcholine was always the major source of arachidonic acid. Arachidonic acid release from endometrial glands and stromal cells may be mediated by activation of PLA2 (or phospholipase C) via a G-protein, but in glands calcium ionophore may have a direct effect on PLA2. The response to calcium ionophore may reflect the differences in calcium requirements of the two endometrial PLA2 isoenzymes.  相似文献   

4.
Sjursen W  Brekke OL  Johansen B 《Cytokine》2000,12(8):1189-1194
The involvement of cytosolic phospholipase A(2)(cPLA(2)) and secretory non-pancreatic PLA(2)(npPLA(2)) in release of arachidonic acid (AA) preceding eicosanoid formation in the human keratinocyte cell line HaCaT was examined. Interleukin 1beta (IL-1beta) and tumour necrosis factor-alpha (TNF), phorbol myristate acetate (PMA) and calcium ionophore A(23187)increased the extracellular AA release, and stimulated eicosanoid synthesis as determined by HPLC analysis. The main metabolites after stimulation with IL-1beta, PMA or A(23187)were PGE(2), an unidentified PG and LTB(4), while TNF stimulated HETE-production. Both cPLA(2)and npPLA(2)message and enzyme activity were detected in unstimulated HaCaT cells. IL-1beta, PMA and TNF increased both cPLA(2)enzyme activity and expression, but did not lead to any increase in npPLA(2)expression or activity. The selective npPLA(2)inhibitors LY311727 and 12-epi-scalaradial, or the cPLA(2)inhibitor arachidonyl trifluoro methyl ketone (AACOCF(3)) reduced IL-1beta-induced eicosanoid production in a concentration dependent manner. The results presented strongly suggest that both cPLA(2)and npPLA(2)contribute to the long-term generation of AA preceding eicosanoid production in differentiated, human keratinocytes. Inhibitors against npPLA2 or cPLA2 enzymes should be useful in treating inflammatory skin diseases, such as psoriasis.  相似文献   

5.
gamma-Thrombin stimulated release of [3H]arachidonic acid ([3H]AA) accompanied by a significant production of PAF and lyso-PAF by rabbit platelets. These responses, which reflect PLA2 activation, were observed after a prolonged lag and to a lower extent when compared to those induced by alpha-thrombin which evoked a much higher elevation in intracellular calcium. This elevation together with [3H]AA release were markedly reduced by EDTA. However, addition of ionophore A23187 enhanced the release of [3H]AA by gamma-thrombin to the levels similar to those of alpha-thrombin. We conclude that gamma-thrombin is able to activate PLA2 and suggest that calcium influx may be a limiting factor for this activation.  相似文献   

6.
Treatment of rat glomerular mesangial cells with recombinant human interleukin 1 alpha (rIL-1 alpha), recombinant human interleukin 1 beta (rIL-1 beta) or recombinant human tumor necrosis factor (rTNF) induces prostaglandin E2 (PGE2) synthesis and the release of a phospholipase A2 (PLA2) activity. rIL-1 beta is significantly more potent than rIL-1 alpha or rTNF in stimulating PGE2 as well as PLA2 release from mesangial cells. When given together, rTNF interacts in a synergistic fashion with rIL-1 alpha and rIL-1 beta to enhance both, PGE2 synthesis and PLA2 release. The released PLA2 has a neutral pH optimum and is calcium-dependent. Pretreatment of cells with actinomycin D or cycloheximide inhibits basal and cytokine-stimulated PGE2 and PLA2 release.  相似文献   

7.
The divalent cation ionophore A23187 is frequently used for studies of eosinophil degranulation. Nonetheless, the mechanism whereby A23187 induces degranulation in human eosinophils is still unclear. In the present experiments, A23187 caused human eosinophils to release a granule protein, eosinophil-derived neurotoxin (EDN) and a membrane-associated protein, Charcot-Leyden crystal (CLC) protein in a calcium and a concentration-dependent manner. However, A23187 at a concentration (1 microgram/ml) that caused 15% EDN release and 30% CLC protein release also produced release of the cytoplasmic enzyme lactic dehydrogenase (LDH) and loss of cell viability, both of which were calcium dependent. CLC protein release preceded EDN release and was detectable even at 15 min after the addition of 1 microgram/ml A23187, whereas EDN release occurred after a lag period of 30 min, and coincided with LDH release. At 1 microgram/ml A23187, neither the release of LDH nor the loss of viability occurred with purified neutrophils obtained in the same blood sample as a by-product of eosinophil purification. Electron microscopic examination demonstrated that exposure to A23187 for 15 min resulted in an increase and elongation of microridges on the cell surface, and exposure for 45 min caused cell disruption followed by extrusion of membrane-bound granules through breaks in the plasma membrane. Only once was granule exocytosis observed. These results indicate that A23187 treatment of eosinophils causes an initial release of membrane-associated CLC protein by a noncytolytic mechanism, and causes degranulation as a result of eosinophil lysis.  相似文献   

8.
Activated by bacterial peptides, phorbol esters, calcium ionophores and other agonists, neutrophils (PMNs) release the proinflammatory mediator, arachidonic acid (AA) via the intervention of phospholipase A(2) (PLA(2)). AA may play an essential role in activation of NADPH-oxidase, which is involved in the generation of superoxide anion by neutrophils. The present study is focused on the involvement of PLA(2) in the respiratory burst developed by PMNs isolated from patients with rheumatoid arthritis (RA). PLA(2) exists in very high levels in diseases such as rheumatoid arthritis and may cause acute inflammatory and proliferative changes in synovial structures. The respiratory burst was evaluated as superoxide anion release, using an amplified chemiluminescence method. The assays were performed using PMNs untreated or treated with different doses of stimulatory reagents (phorbol 12-myristate-13-acetate (PMA), calcium ionophore (A23187)). Our data suggested that PMA stimulated the production of superoxide anion in a dose-response manner, as compared with A23187, which did not induce a significant release of superoxide anion in PMNs-RA. The exogenous addition of AA significantly amplified the superoxide anion release by PMNs-RA stimulated with PMA and to a lesser extent, by PMNs stimulated with A23187. AA has also reversed the inhibitory effect of arachidonyl-trifluorometylketone and E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)2H-pyran-2-one (BEL) on the superoxide anion release by PMNs-RA. In conclusion, the differential responses to these two agents suggested that different isoforms of PLA(2) were activated by A23187 or PMA, and support the idea that activation of these different PLA(2) served distinct functions of PMNs. Therefore, the inhibition of PLA(2) enzymes might be of great importance in the immunotherapy of rheumatoid arthritis.  相似文献   

9.
Treatment of bovine pulmonary artery endothelial cells with the calcium ionophore, A23187, stimulates the cell membrane associated protease activity, phospholipase A2 (PLA2) activity, and arachidonic acid (AA) release from the cells. Pretreatment of the cells with arachidonyl-trifluomethylketone (AACOCF3), a cPLA2 inhibitor, but not bromoenollactone (BEL), a iPLA2 inhibitor, prevents A23187 stimulated PLA2 activity and AA release without producing an appreciable alteration of the protease activity. Pretreatment of the cells with aprotinin, an ambient protease inhibitor, prevents the increase in the protease activity and cPLA2 activity in the membrane and AA release from the cells caused by both low and high doses of A23187, and also inhibits protein kinase C (PKC) activity caused by high doses of A23187. Immunoblot study of the endothelial cell membrane isolated from A23187 (10 microM)-treated cells with polyclonal PKCalpha antibody elicited an increase in the 80 kDa immunoreactive protein band along with an additional 47 kDa immunoreactive fragment. Pretreatment of the cells with aprotinin abolished the 47 kDa immunoreactive fragment in the immunoblot. Immunoblot study of the endothelial membrane with polyclonal cPLA2 antibody revealed that treatment of the cells with A23187 dose-dependently increases cPLA2 immunoreactive protein profile in the membrane. It therefore appears from the present study that treatment of the cells with a low dose of A23187 (1 microM) causes a small increase in an aprotinin-sensitive protease activity and that stimulates cPLA2 activity in the cell membrane without an involvement of PKC. By contrast, treatment of the cells with a high dose of 10 microM of A23187 causes optimum increase in the protease activity and that plays an important role in activating PKCalpha, which subsequently stimulates cPLA2 activity in the cell membrane. Although pretreatment of the cells with pertussis toxin caused ADP ribosylation of a 41 kDa protein in the cell membrane, it did not inhibit the cPLA2 activity and AA release caused by both low and high doses of A23187.  相似文献   

10.
The objective of this investigation was to determine the role of secretory and cytosolic isoforms of phospholipase A(2) (PLA(2)) in the induction of arachidonic acid (AA) and leukotriene synthesis in human eosinophils and the mechanism of PLA(2) activation by mitogen-activated protein kinase (MAPK) isoforms in this process. Pharmacological activation of eosinophils with fMLP caused increased AA release in a concentration (EC(50) = 8.5 nM)- and time-dependent (t(1/2) = 3.5 min) manner. Both fMLP-induced AA release and leukotriene C(4) (LTC(4)) secretion were inhibited concentration dependently by arachidonic trifluoromethyl ketone, a cytosolic PLA(2) (cPLA(2)) inhibitor; however, inhibition of neither the 14-kDa secretory phospholipase A(2) by 3-(3-acetamide-1-benzyl-2-ethylindolyl-5-oxy)propanephosphonic acid nor cytosolic Ca(2+)-independent phospholipase A(2) inhibition by bromoenol lactone blocked hydrolysis of AA or subsequent leukotriene synthesis. Pretreatment of eosinophils with a mitogen-activated protein/extracellular signal-regulated protein kinase (ERK) kinase inhibitor, U0126, or a p38 MAPK inhibitor, SB203580, suppressed both AA production and LTC(4) release. fMLP induced phosphorylation of MAPK isoforms, ERK1/2 and p38, which were evident after 30 s, maximal at 1-5 min, and declined thereafter. fMLP stimulation also increased cPLA(2) activity in eosinophils, which was inhibited completely by 30 microM arachidonic trifluoromethyl ketone. Preincubation of eosinophils with U0126 or SB203580 blocked fMLP-enhanced cPLA(2) activity. Furthermore, inhibition of Ras, an upstream GTP-binding protein of ERK, also suppressed fMLP-stimulated AA release. These findings demonstrate that cPLA(2) activation causes AA hydrolysis and LTC(4) secretion. We also find that cPLA(2) activation caused by fMLP occurs subsequent to and is dependent upon ERK1/2 and p38 MAPK activation. Other PLA(2) isoforms native to human eosinophils possess no significant activity in the stimulated production of AA or LTC(4).  相似文献   

11.
Binding of LA350, a lymphoblastoid human B cell line, by phorbol myristate acetate (PMA) plus a calcium ionophore, either ionomycin or A23187, produced unique alterations in the release of arachidonic acid (AA) from cellular phospholipids. After equilibrium labeling of cells with radioactive fatty acids, [14C]AA demonstrated a selective enhanced release from the cells in response to the binding of PMA plus calcium ionophore as compared to the release of [14C]stearic acid (STE), [3H]oleic acid (OLE) and [3H]palmitic acid (PAL). The major phospholipid sources of the released [14C]AA were shown to be phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol. The participation of protein kinase C (PKC) in the enhanced synergistic release of [14C]AA was demonstrated by the inhibition of the release by the PKC inhibitor, staurosporine. Approximately 2-6% of the labeled AA liberated was converted to 5-hydroxyeicosatetraenoic acid by an endogenous 5-lipoxygenase. Therefore during cell activation the B cell is capable of liberating AA via a PKC-dependent mechanism, implicating AA and/or its metabolites in signal transduction.  相似文献   

12.
Thrombin-induced release of arachidonic acid from human platelet phosphatidylcholine is found to be more than 90% impaired by incubation of platelets with 1 mM dibutyryl cyclic adenosine monophosphate (Bt2 cyclic AMP) or with 0.6 mM 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate (TMB-8), an intracellular calcium antagonist. Incorporation of arachidonic acid into platelet phospholipids is not enhanced by Bt2 cyclic AMP. The addition of external Ca2+ to thrombin-treated platelets incubated with Bt2 cyclic AMP or TMB-8 does not counteract the observed inhibition. However, when divalent cation ionophore A23187 is employed as an activating agent, much less inhibition is produced by Bt2 cyclic AMP or TMB-8. The inhibition which does result can be overcome by added Ca2+. Inhibition of arachidonic acid liberation by Bt2 cyclic AMP, but not by TMB-8, can be overcome by high concentrations of A23187. When Mg2+ is substituted for Ca2+, ionophore-induced release of arachidonic acid from phosphatidylcholine of inhibitor-free controls is depressed and inhibition by Bt2 cyclic AMP is slightly enhanced. The phospholipase A2 activity of platelet lysates is increased by the presence of added Ca2+, however, the addition of either A23187 or Bt2 cyclic AMP is without effect on this activity. We suggest that Bt2 cyclic AMP may promote a compartmentalization of Ca2+, thereby inhibiting phospholipase A activity. The compartmentalization may be overcome by ionophore. By contrast, TMB-8 may immobilize platelet Ca2+ stores in situ or restrict access of Ca2+ to phospholipase A in a manner not susceptible to reversal by high concentrations of ionophore.  相似文献   

13.
We previously reported that exogenously added human group V phospholipase A2 (hVPLA2) could elicit leukotriene B4 biosynthesis in human neutrophils through the activation of group IVA phospholipase A2 (cPLA2) (Kim, Y. J., Kim, K. P., Han, S. K., Munoz, N. M., Zhu, X., Sano, H., Leff, A. R., and Cho, W. (2002) J. Biol. Chem. 277, 36479-36488). In this study, we determined the functional significance and mechanism of the exogenous hVPLA2-induced arachidonic acid (AA) release and leukotriene C4 (LTC4) synthesis in isolated human peripheral blood eosinophils. As low a concentration as 10 nm exogenous hVPLA2 was able to elicit the significant release of AA and LTC4 from unstimulated eosinophils, which depended on its ability to act on phosphatidylcholine membranes. hVPLA2 also augmented the release of AA and LTC4 from eosinophils activated with formyl-Met-Leu-Phe + cytochalasin B. A cellular fluorescent PLA2 assay showed that hVPLA2 had a lipolytic action first on the outer plasma membrane and then on the perinuclear region. hVPLA2 also caused the translocation of 5-lipoxygenase from the cytosol to the nuclear membrane and a 2-fold increase in 5-lipoxygenase activity. However, hVPLA2 induced neither the increase in intracellular calcium concentration nor cPLA2 phosphorylation; consequently, cPLA2 activity was not affected by hVPLA2. Pharmacological inhibition of cPLA2 and the hVPLA2-induced activation of eosinophils derived from the cPLA2-deficient mouse corroborated that hVPLA2 mediates the release of AA and leukotriene in a cPLA2-independent manner. As such, this study represents a unique example in which a secretory phospholipase induces the eicosanoid formation in inflammatory cells, completely independent of cPLA2 activation.  相似文献   

14.
Previous studies suggested a role for calcium in CYP2E1-dependent toxicity. The possible role of phospholipase A2 (PLA2) activation in this toxicity was investigated. HepG2 cells that overexpress CYP2E1 (E47 cells) exposed to arachidonic acid (AA) +Fe-NTA showed higher toxicity than control HepG2 cells not expressing CYP2E1 (C34 cells). This toxicity was inhibited by the PLA2 inhibitors aristolochic acid, quinacrine, and PTK. PLA2 activity assessed by release of preloaded [3H]AA after treatment with AA+Fe was higher in the CYP2E1 expressing HepG2 cells. This [3H]AA release was inhibited by PLA2 inhibitors, alpha-tocopherol, and by depleting Ca2+ from the cells (intracellular + extracellular sources), but not by removal of extracellular calcium alone. Toxicity was preceded by an increase in intracellular calcium caused by influx from the extracellular space, and this was prevented by PLA2 inhibitors. PLA2 inhibitors also blocked mitochondrial damage in the CYP2E1-expressing HepG2 cells exposed to AA+Fe. Ca2+ depletion and removal of extracellular calcium inhibited toxicity at early time periods, although a delayed toxicity was evident at later times in Ca2+-free medium. This later toxicity was also inhibited by PLA2 inhibitors. Analogous to PLA2 activity, Ca2+ depletion but not removal of extracellular calcium alone prevented the activation of calpain activity by AA+Fe. These results suggest that release of stored calcium by AA+Fe, induced by lipid peroxidation, can initially activate calpain and PLA2 activity, that PLA2 activation is critical for a subsequent increased influx of extracellular Ca2+, and that the combination of increased PLA2 and calpain activity, increased calcium and oxidative stress cause mitochondrial damage, that ultimately produces the rapid toxicity of AA+Fe in CYP2E1-expressing HepG2 cells.  相似文献   

15.
Synthesis and release of leukotriene C4 by human eosinophils   总被引:13,自引:0,他引:13  
When human peripheral blood eosinophils isolated to 92.5% +/- 6.9 purity were stimulated with either the calcium ionophore A23187 or N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP), immunoreactive leukotriene C4 (LTC4) was initially localized intracellularly and was subsequently released to the external medium in kinetically distinguishable steps. Eosinophils were stimulated with 2.5 microM A23187 in the presence of 20 mM L-serine, a hypochlorous acid scavenger that prevents the oxidative metabolism of sulfidopeptide leukotrienes. Total production of immunoreactive LTC4, the sum of intra- and extracellular LTC4, was complete within 5 to 10 min. At 5, 10, and 30 min, 65.9% +/- 15.2, 42.3% +/- 24.3, and 5.5% +/- 3.9, respectively, of the total amount of LTC4 measured remained intracellular as detected after the media and cells were separated and the latter was extracted with methanol. The time course for the intracellular synthesis and extracellular release of immunoreactive LTC4 from eosinophils pretreated with 5 micrograms/ml cytochalasin B and stimulated with 0.5 microM FMLP was like that obtained with ionophore, although the total LTC4 production was only approximately 10%. The identity of the intracellular LTC4 was confirmed by elution with reverse-phase high pressure liquid chromatography followed by scanning UV spectroscopy, radioimmunoassay, and bioassay. Eosinophils that were stimulated with A23187 in the absence of L-serine metabolized newly synthesized LTC4 to 6-trans-LTB4 diastereoisomers and subclass-specific diastereoisomeric sulfoxides that were identified only in the extracellular medium. Thus the response of purified eosinophils to two different stimuli demonstrates a transient intracellular accumulation of biologically active LTC4, the distinct extracellular release, and the apparent limitation of oxidative metabolism to the extracellular location.  相似文献   

16.
1-Alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase catalyzes the conversion of biologically inactive lysophospholipid to bioactive platelet-activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine, PAF) by an acetylation reaction. The activity of this enzyme in eosinophils isolated from patients with eosinophilia is stimulated (up to 4-fold) in a dose-, time-, and Ca2+/Mg2+-dependent manner after exposure to the eosinophil chemotactic factor of anaphylaxis (ECF-A), C5a, formyl-methionylleucylphenylalanine (fMLP), or ionophore A23187. The three naturally occurring chemotactic factors (ECF-A, C5a, and fMLP) cause a rapid and transient increase of enzyme activity, with a maximum at 1 or 3 min, whereas ionophore A23187 maintains an elevated level for up to 15 min. The activity of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine acetylhydrolase, an enzyme that catalyzes the breakdown of PAF to lyso-PAF, is not affected by C5a, fMLP, or ionophore A23187. The presence of PAF in eosinophils was established by demonstrating the lipid nature of the compound, the RF value being identical with that of synthetic 1-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine on thin layer chromatograms, and by its ability to induce serotonin release from rabbit platelets. Furthermore, ECF-A, C5a, fMLP, and ionophore A23187 all induce the secretion of PAF from eosinophils. These findings suggest that the generation and release of PAF could be a consequence of eosinophil chemotactic activation and may thus function in inflammatory and allergic reactions in which eosinophils participate.  相似文献   

17.
Several studies indicate that phospholipase A(2) (PLA(2)) expression and/or activation account for the high levels of arachidonic acid (AA) detected in cancer and, together with the elevated expression of cyclooxygenase-2, lead to cell proliferation and tumor formation. Using Caco-2 cells, a human colorectal carcinoma cell, we studied the role of high-molecular-weight PLA(2)s, cytosolic PLA(2) (cPLA(2)), and calcium-independent PLA(2) (iPLA(2)) in the AA cascade and in cell growth. Treatment with an antisense oligonucleotide against cPLA(2)alpha decreased [(3)H]AA release induced by ionophore A23187 or by a phorbol ester but did not affect the release of [(3)H]AA, [(3)H]thymidine incorporation, or Caco-2 growth induced by fetal calf serum (FCS). However, these parameters were significantly modified by iPLA(2) inhibitors and by an antisense oligonucleotide against iPLA(2)beta. Our results show that iPLA(2) was involved in AA release and the subsequent prostaglandin production induced by serum. Moreover, these data indicate that iPLA(2) may be involved in the signaling pathways involved in the control of Caco-2 proliferation.  相似文献   

18.
CHO transfectants expressing the three subtypes of rat alpha2 adrenergic receptors (alpha2AR): alpha2D, alpha2B, alpha2C were studied to compare the transduction pathways leading to the receptor-mediated stimulation of phospholipase A2 (PLA2) in the corresponding cell lines CHO-2D, CHO-2B, CHO-2C. The alpha2B subtype stimulated the arachidonic acid (AA) release after incubation of the cells with 1 microM epinephrine, whereas alpha2D and alpha2C gave no stimulation. Calcium ionophore A23187 (1 microM) increased the release by a factor of 2-4 in the three strains. When cells were incubated with both epinephrine and Ca2+ ionophore, the AA release differed greatly between cell lines with strong potentiation in CHO-2B (2-3 times greater than Ca2+ ionophore alone), moderate potentiation in CHO-2D, and no potentiation in CHO-2C. The three cell lines each inhibited adenylylcyclase with similar efficiencies when 1 microM epinephrine was used as the agonist. The potentiation depended on both alpha2AR and Gi proteins since yohimbine and pertussis toxin inhibited the process. Pretreatment of CHO-2B cells with MAFP which inhibits both cytosolic and Ca2+-independent PLA2, reduced the release of AA induced by epinephrine+Ca2+ ionophore to basal value, whereas bromoenol lactone, a specific Ca2+-independent PLA2 inhibitor, had no effect. Preincubation of the cells with the intracellular calcium chelator BAPTA gave a dose-dependent inhibition of the arachidonic acid (AA) release. In CHO cells expressing the angiotensin II type 1 receptor, coupled to a Gq protein, the agonist (10-7 M) produced maximal AA release: there was no extra increase when angiotensin and Ca2+ ionophore were added together. There was no increase in the amount of inositol 1,4, 5-triphosphate following stimulation of CHO-2B, -2C, -2D cells with 1 microM epinephrine. Epinephrine led to greater phosphorylation of cPLA2, resulting in an electrophoretic mobility shift for all three cell lines, so inadequate p42/44 MAPKs stimulation was not responsible for the weaker stimulation of cPLA2 in CHO-2C cells. Therefore, the stimulation of cPLA2 by Gi proteins presumably involves another unknown mechanism. The differential stimulation of cPLA2 in these transfectants will be of value to study the actual involvement of the transduction pathways leading to maximal cPLA2 stimulation.  相似文献   

19.
Cultured endothelial cells (EC) from human umbilical vein were incubated with [U-14C]arachidonic acid (AA) followed by a challenge with thrombin (2 units/ml) or calcium ionophore A23187 (5 microM) for 0.5-10 min at 37 degrees C. In both cases, AA was rapidly liberated from phospholipids and converted into prostaglandin I2 (PGI2), as determined by the radioactivity of the stable derivative 6-keto-PGF1 alpha. Maximal liberation of AA and synthesis of PGI2 were achieved within 2 min, but the two compounds first accumulated in EC prior to their release into supernatants. This finding, which was never reported before, raises the question of the mechanism of AA and PG release through the cell membranes and offers a convenient model to investigate this still obscure process.  相似文献   

20.
Phagocytosis of opsonized zymosan by human eosinophils results in a dose-dependent noncytotoxic release of histaminase as well as arylsulfatase and beta-glucuronidase. The calcium ionophore A23187 also stimulates release of eosinophil histaminase at concentrations of ionophore which barely release arylsulfatase and beta-glucuronidase. Zymosan-induced histaminase release from eosinophils but not from neutrophils was abolished or markedly reduced in the presence of cytochalasin B, suggesting a difference in the mechanisms of histaminase release from the two granulocyte cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号