首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformation of the globular dimer (G2), the tailed asymmetric dodecamer (A12, also containing some tailed octamer A8) and the globular tetramer (G4, prepared by removing the collagen-like tail from A12) of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) was studied by circular dichroism (CD) in the ultraviolet region. The G2 and G4 forms had similar conformation with about 40% α-helix, 35% β-sheets and 4% β-turns; the tailed form had a lower helicity (about 34%) and β-form (about 25%) content probably because of the presence of the tail whose CD spectrum resembles that of an unordered form, but it had about the same amount of β-turns as the other two forms. All three forms also had similar CD spectra in the near-ultraviolet region due to their non-peptide chromophores. The pH, thermal and urea denaturation of the three acetylcholinesterase forms was also similar to each other. The pH-dependency of both the enzymatic activity and CD intensity of the three forms showed bell-shaped curves with a plateau at pH 7–8. The activity was completely lost at pH below 5 or above 10, but the corresponding CD spectra retained 70–80% of the original magnitudes. Thermal denaturation of the three forms at pH 7.5 showed a conformational transition and loss of activity between 30 and 40°C, but the CD intensity of the helical band at 222 nm was reduced by only 20–30%. Urea denaturation of the three form began at 1 M urea; it was protein concentration- and time-dependent. Again, the activity disappeared faster than the decreasing CD intensity. Thus, the overall conformation of the three acetylcholinesterase forms appears to be relatively stable, but their active site is easily perturbed by changing the environment. The loss of activity correlated well with the disapperance of the CD band of tryptophan(s) in the near-ultraviolet region, suggesting that the Trp residue(s) might be at or near the active center of the enzyme.  相似文献   

2.
Acidosis (pH 6.0) led to significant decrease in high—affinity choline uptake by rat brain synaptosomes. The effects persisted following pH readjustment (7.4) of the incubation medium, consisting of decrease in both Km and Vmax of the affinity system. pH readjustment coincided with synaptosomal leakage of lactate dehydrogenase (LDH) and with instability of the synaptosomal suspension as evidenced from turbidity modifications of the preparation. LDH leakage occurred when acidosis was performed with lactic acid, whereas it was not seen following H3PO4 acidosis, probably because of the rapid diffusion of the protonated form of lactic acid across membranes. Turbidity modifications of the suspension were prevented by EDTA. The present results indicate that acidosis to pH level comparable to what is observed in brain ischemia is deleterious for cholinergic mechanisms. They also suggest that alkaline pH shifts that occur after blood reperfusion of ischemic brain tissue might be critical for the survival of cells.To whom to address reprint requests.  相似文献   

3.
Abstract: Phosphate-activated glutaminase (EC 3.5.1.2) in synaptosomal preparations is inhibited 40–60% by the sulphydryl group reagent N -ethylmaleimide (NEM), forming the basis for distinction between NEM-sensitive and NEM-insensitive glutaminases. The NEM effect cannot be explained by differential effects on distinct glutaminases because other glutaminases have not been detected, and the synaptosomal glutaminase activity can be fully accounted for by the activity of phosphate-activated glutaminase. By fractionation of mitochondria isolated from synaptosomal preparations, which are preincubated with and without NEM, both NEM-sensitive and NEM-insensitive glutaminases are found to be localized to the inner mitochondrial membrane. Variations in pH (7.0–7.6) and the phosphate concentration (5–10 mM) affect chiefly NEM-sensitive glutaminase, demonstrating that this glutaminase may be subject to regulation by compounds in the cytosol having restricted permeability to the inner mitochondrial membrane. Since p -hydroxymercuribenzoate, which is known to be impermeable to the inner mitochondrial membrane, inhibits glutaminase similarly to NEM, phosphate-activated glutaminase is assumed to be compartmentalized within the inner mitochondrial membrane. Thus, NEM-sensitive glutaminase is localized to the outer face and NEM-insensitive glutaminase to the inner region of this membrane and probably also to the matrix region.  相似文献   

4.
Abstract: Dopamine synthesis regulation as a function of pH has been examined in rat brain striatal synaptosomes. Synthesis stimulation produced by lowering the incubation pH from 7.2 to 6.2 is accompanied by a significant increase in apparent A'm for tyrosine and in apparent Vmax. While these kinetic alterations are similar to those produced by the depolarizing agent veratridine, it does not appear that synthesis is stimulated at pH 6.2 via synaptosomal depolarization since (1) synthesis stimulation still occurs at pH 6.2 in a calcium-free medium in contrast to the calcium-dependency of veratridine- induced stimulation and (2) tyrosine uptake is not inhibited by incubation at pH 6.2, but is markedly inhibited by veratridine. In order to study how the regulatory properties of synaptosomal preparations vary according to pH, the ability of synaptosomal dopamine synthesis to respond to various agents was tested between pH 7.2 and 6.2. The stimulatory effects of veratridine, amphetamine, phenylethylamine and dibutyryl cyclic AMP at pH 7.2 were significantly diminished at pH 6.2. In addition, incubation at pH 6.2 antagonized the veratridine-induced inhibition of tyrosine uptake, suggesting an interference with the depolarization process. The inhibitory effects of dopamine and tyramine at pH 7.2 were also antagonized at pH 6.2. In contrast to the effects of pH 6.2 buffer, incubation at pH 6.6 does not markedly alter responses to the various drugs. The results suggest that, although basal dopamine synthesis rates can be increased by lowering the pH, synaptosomal regulatory properties are significantly altered as the pH is lowered below 6.6.  相似文献   

5.
Phospholipase A2 activity in islet cell homogenates and dispersed islet cells of the rat was determined using an exogenous radiolabeled phospholipid substrate from E.coli membranes. Phospholipase A2 activity in islet homogenates was found to have two pH optima in acid or neutral/alkaline pH ranges. The enzyme activity at pH 7.5 was calcium dependent and responded to increasing calcium concentrations with graded increases in phospholipid hydrolysis. Preincubation of islets with a concentration of glucose known to elicit maximum rates of insulin secretion resulted in a stable activation of phospholipase A2 activity which was assayable in islet homogenates. Glucose stimulated phospholipase A2 in these preparations by as much as 220% above control. 2-Deoxy-D-glucose, a nonsecretory analogue of glucose, did not elicit a significant increase in islet phospholipase A2 activity. The glucose sensitive enzyme was associated with a membrane-enriched subcellular fraction in which the glucose-stimulated activity was greater than 2-fold higher than control activity. Glucose stimulation potentiated the phospholipase A2 activity measured in the presence of high calcium concentrations. Phospholipase A2 activity was also found in dispersed islet cell preparations where glucose stimulation of what may be a partly externalized membrane enzyme was most apparent at low calcium concentrations. These data indicate that islet cells possess phospholipase A2 activity which may be in part localized to the plasma membrane as well as other membrane systems, and which exhibits the characteristic properties of pH and calcium dependency, and sensitivity to secretagogue stimulation reported for the enzyme in other secretory systems.  相似文献   

6.
Wang H  Qian C  Roman M 《Biomacromolecules》2011,12(10):3708-3714
This study examines the effects of pH and salt concentration on the formation and properties of chitosan-cellulose nanocrystal (CNC) polyelectrolyte-macroion complexes (PMCs). The components' pK values, determined by potentiometric titration, were 6.40 for chitosan and 2.46 for the CNCs. The turbidity of PMC particle suspensions was measured as a function of chitosan-CNC ratio, pH, and salt concentration. The maximum turbidity values in titrations of a chitosan solution with a CNC suspension and vice versa occurred at charge ratios of 0.47 ± 0.11 (SO(3)(-)/NH(3)(+)) and 1.16 ± 0.06 (NH(3)(+)/SO(3)(-)), respectively. A pH increase caused a turbidity decrease due to shrinking of the PMC particles upon changes in their components' degrees of ionization. An increase in salt concentration caused a decrease in turbidity due to charge-screening-related shrinking of the PMC particles. The effects of pH and salt concentration on particle size were confirmed by scanning electron microscopy.  相似文献   

7.
S Kubota  J T Yang 《Biopolymers》1986,25(8):1493-1504
The conformation of melittin, a surface-active polypeptide, in solution was studied by CD spectra between 190 and 240 nm. The molecule was essentially unordered (possibly with a trace of helix) in water without salt at neutral pH. Upon deprotonation of four of the six cationic groups at pH 12 the polypeptide became partially helical (about 35%). The addition of NaDodSO4 to an aqueous melittin solution first caused the solution to become turbid but it became clear again in excess surfactant solution. The conformational changes depended on the molar NaDodSO4/melittin ratio, R. With R from 2.34 to 23.4, the melittin solution was turbid and the polypeptide conformation was probably a mixture of α-helix and β-sheets. This was supported by the ir spectrum of the turbid solution, which indicated the presence of both conformations. With R = 46.8 or 468 (1 or 10 mM NaDodSO4) the polypeptide conformation was characteristic of an α-helix, about 70–80% of the molecule, regardless of whether the surfactant was above or below its critical micelle concentration. This compared well with the x-ray results of 92% helix in crystals. The lower helicity of melittin in NaDodSO4 solution might be attributed to the end effects that destabilize the first and last turn of an helix at its N- and C-terminus, respectively.  相似文献   

8.
Interaction of lysozyme with dyes. II. Binding of bromophenol blue   总被引:1,自引:0,他引:1  
The binding of lysozyme with bromophenol blue (BPB) at various dye concentrations and pH was carried out at 25 degrees C by equilibrium dialysis, ultraviolet (UV) difference and circular dichroism (CD) spectral techniques. Binding isotherms at pH 5.0 show non-cooperative binding at low dye concentrations, which change over to cooperative binding at higher concentrations indicating biphasic nature. However, binding isotherms at pH 7.0 and 9.0 show cooperative binding only, at all concentrations of the dye. The number of available binding sites decreases with the increase of pH. Gibbs free energy change, calculated on the basis of Wyman's binding potential concept, decreases with the increase of pH. Binding isotherms at pH 5.0 obtained at a lower temperature of 8 degrees C, also indicate the biphasic nature similar to those observed at 25 degrees C, but with a slight decreased strength of binding. The UV difference spectra of the complex do not show any distinct peaks in the 285 to 297 nm region eliminating any possible interaction of BPB with tryptophan and tyrosine residues of the lysozyme molecule. The CD spectra of lysozyme-BPB complex show a decrease in ellipticities with reference to native lysozyme in the near UV and far UV regions. This indicates that the lysozyme-BPB complex has a lower helical content probably due to the conformational changes induced into the native enzyme. The appearance of new positive peaks at 315 nm in the near UV region and at 592 nm in the visible region of the CD spectra may be due to the induced asymmetry into the BPB molecule as a result of its binding to a cationic residue (probably a lysine residue) of lysozyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Acid denaturation of Aspergillus niger glucoamylase was studied using different conformational probes. Both far-UV CD spectral signal (MRE222 nm) and tryptophan fluorescence remained unchanged in the pH range, 7.0–3.0 but decreased significantly below pH 3.0, whereas ANS fluorescence showed a marked increase below pH 1.5. Maximal changes in MRE222 nm and ANS fluorescence were noticed at pH 1.0. Acid-denatured state of glucoamylase at pH 1.0 retained a significant amount of secondary structure as reflected from far-UV CD spectra but showed a deformed tertiary structure with significant exposure of nonpolar groups as well as tryptophan residues as revealed by increased ANS fluorescence, decreased tryptophan fluorescence and three-dimensional fluorescence spectral signals and increase in Ksv value in acrylamide quenching experiments. Acid-denatured state showed no significant variation in the CD spectral signal throughout the temperature range, 0–100 °C. However, a late cooperative transition was observed upon GdnHCl treatment, compared to the native enzyme. All these results suggested that the acid-denatured state of glucoamylase at pH 1.0 represented the molten globule-like state.  相似文献   

10.
NADPn–protochlorophyllide oxidoreductase (EC 1.6.99.1; PCR) is the major protein component of the prolamellar body (PLB) membrane of the etioplast. The interaction between the pigment–protein complex of PCR and the membrane lipids is of importance for the induction and maintenance of the regularly branched PLB structure. The isoelectric point of the PLB surface and the impact of salt treatment on the PLB structure, the PCR absorbance properties and the association of PCR to the membrane, have been studied in isolated fractions of PLBs from dark–grown wheat ( Triticum aestivum L. cv. Starke 11). We conclude that the PLB membrane has its isoelectric point at pH 4.5. which is similar to that of other plastid membranes. The PLB membrane and the pigment–protein complex of PCR are both affected by salt treatment. Concentrations below 50 mM MgCl2, or 250 m M KCI tend to stabilize the regularly branched strueture. while higher concentrations of both mono– and divalent cations lead to disintegration of the membrane and shifts towards shorter wave–lengths of the in vivo absorbance spectra of protoehlorophyllide. PCR. the dominant PLB protein, however, seems to be intimately associated with the membrane lipids and is not washed off the membrane by repeated salt treatment.  相似文献   

11.
R S Lord  D J Cox 《Biopolymers》1973,12(10):2359-2373
Oligopeptides containing glycine and one or two L -alanyl or L -glutamyl residues have been studied by circular dichroism (CD) and optical rotatory dispersion (ORD) in aqueous solution at pH 1.0, pH 6.0, and pH 10.0 and in aqueous ethanol. Two glycyl residues are required to remove effects of α-carboxyl or amino titration on the optical activity of the internal alanyl or glutamyl residues. The CD spectra of the alanyl and protonated glutamyl residues are similar, having two regions of negative ellipticity around 215 nm resulting in a spectrum reassembling that of poly-α-L -glutamic acid (PGA) at high pH. Another large positive band below 190 nm was observed for gly2-glu2-gly2 in water at pH 6 and 10 and for several peptides in aqueous ethanol. Residue ellipticities were approximately additive in every case except for peptides containing intrenal glutamyl residu at pH 6.0.  相似文献   

12.
The peptide surfactants are amphiphilic peptides which have a hydrophobic tail and a hydrophilic head, and have been reported to stabilize and protect some membrane proteins more effectively than conventional surfactants. The effects of a class of peptide surfactants on the structure and thermal stability of the photosynthetic membrane protein lightharvesting complex II (LHCII) in aqueous media have been investigated. After treatment with the cationic peptide surfactants A6K, V6K2, I5K2 and I5R2, the absorption at 436 nm and 470 nm decreased and the absorption at 500–510 nm and 684–690 nm increased. Moreover, the circular dichroism (CD) signal intensity in the Soret region also decreased significantly, indicating the conformation of some chlorophyll (Chl) a, Chl b, and the xanthophyll molecules distorted upon cationic peptide surfactants treatment. The anionic peptide surfactants A6D and V6D2 had no obvious effect on the absorption and CD spectra. Except for A6D, these peptides all decreased the thermal stability of LHCII, indicating that these peptides may reconstitute protein into a less stable conformation. In addition, the cationic peptide surfactants resulted in LHCII aggregation, as shown by sucrose gradient ultracentrifugation and fluorescence spectra.  相似文献   

13.
Circular dichroic (CD) spectra of three related protein pigments from Halobacterium halobium, halorhodopsin (HR), bacteriorhodopsin (BR), and sensory rhodopsin I (SR-I), are compared. In native membranes the two light-driven ion pumps, HR and BR, exhibit bilobe circular dichroism spectra characteristic of exciton splitting in the region of retinal absorption, while the phototaxis receptor, SR-I, exhibits a single positive band centered at the SR-I absorbance maximum. This indicates specific aggregation of protein monomers of HR, as previously noted [Sugiyama, Y., & Mukohata, Y. (1984) J. Biochem. (Tokyo) 96, 413-420], similar to the well-characterized retinal/retinal exciton interaction in the purple membrane. The absence of this interaction in SR-I indicates SR-I is present in the native membrane as monomers or that interactions between the retinal chromophores are weak due to chromophore orientation or separation. Solubilization of HR and BR with nondenaturing detergents eliminates the exciton coupling, and the resulting CD spectra share similar features in all spectral regions from 250 to 700 nm. Schiff-base deprotonation of both BR and HR yields positive CD bands near 410 nm and shows similar fine structure in both pigments. Removal of detergent restores the HR native spectrum. HR differs from BR in that circular dichroic bands corresponding to both amino acid and retinal environments are much more sensitive to external salt concentration and pH. A theoretical analysis of the exciton spectra of HR and BR that provides a range of interchromophore distances and orientations is performed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The effects of pH and temperature on the structure of human erythrocyte membranes were studied by circular dichroism (CD). The results obtained demonstrate that the membrane CD spectra undergo significant changes when the pH of the solution deviates from its native pH range of 7 to 8. Spectral changes in the acidic pH region include drastic reductions and slight shifts in the CD signal which may reflect a decrease in alpha-helical content of the proteins and/or an increase in optical artifacts, both of which are irreversible. In the alkaline pH region, dramatic increases in ellipticity and blue-shifts in the spectra are observed between pH 8 and 10. In addition, the spectra more closely resemble those reported for membrane samples where the spectral distortions have been removed. The changes in the alkaline region are demonstrated to be only partially reversible and may be due to conformational alterations in the membrane proteins and/or to a reduction in optical distortions. Thermal stability studies reinforce the irreversible behavior of the membrane samples.  相似文献   

15.
Correlations between GABAA receptor (GABAA-R) activity and molecular organization of synaptosomal membranes (SM) were studied along the protocol for cholesterol (Cho) extraction with β-cyclodextrin (β-CD). The mere pre-incubation (PI) at 37°C accompanying the β-CD treatment was an underlying source of perturbations increasing [3H]-FNZ maximal binding (70%) and K d (38%), plus a stiffening of SMs’ hydrocarbon core region. The latter was inferred from an increased compressibility modulus (K) of SM-derived Langmuir films, a blue-shifted DPH fluorescence emission spectrum and the hysteresis in DPH fluorescence anisotropy (A DPH) in SMs submitted to a heating–cooling cycle (4–37–4°C) with A DPH,heating < A DPH,cooling. Compared with PI samples, the β-CD treatment reduced B max by 5% which correlated with a 45%-decrement in the relative Cho content of SM, a decrease in K and in the order parameter in the EPR spectrum of a lipid spin probe labeled at C5 (5-SASL), and significantly increased A TMA-DPH. PI, but not β-CD treatment, could affect the binding affinity. EPR spectra of 5-SASL complexes with β-CD-, SM-partitioned, and free in solution showed that, contrary to what is usually assumed, β-CD is not completely eliminated from the system through centrifugation washings. It was concluded that β-CD treatment involves effects of at least three different types of events affecting membrane organization: (a) effect of PI on membrane annealing, (b) effect of residual β-CD on SM organization, and (c) Cho depletion. Consequently, molecular stiffness increases within the membrane core and decreases near the polar head groups, leading to a net increase in GABAA-R density, relative to untreated samples.  相似文献   

16.
The effect of pH on the circular dichroism spectra of phenylmethanesulfonyl-mesentericopeptidase (peptidyl peptide hydrolase, EC 3.4.21) was studied. The ellipticity of the bands below 250 nm, which reflects the backbone conformation of the protein molecule, remains almost unchanged in the pH range 6.2--10.4. However, below pH 6.2 and above pH 10.4 a conformational transition occurs. The pH-dependent changes above 250 nm were also studied. The titration of the CD band at 296 nm reflects the ionization of the "exposed" tyrosines, which phenolic groups are fully accessible to the solvent. An apparent pK of 9.9 is calculated from the titration curve. It is concluded that ionization of the tyrosyl residues with normal pK's is complete before conformational changes in the protein molecule occur.  相似文献   

17.
It has been shown by high-resolution proton magnetic resonance (PMR) spectroscopy and circular dichroism (CD) that an H2A/H2B histone complex exists after salt extraction of these histones from chromatin and that this complex can be fully renatured from both urea-denatured acid-extracted and from urea-denatured salt-extracted histones. The histone complex is shown to involve specific secondary and tertiary structure. Formation of this complex is observed to be critically dependent on pH, occurring at and above pH 5. It cannot be induced below pH 5 by increase in ionic strength. From CD spectra the H2A/H2B complex is shown to contain about 37% alpha helix but no beta structure, the latter being confirmed by infrared spectroscopy in the 6-mum region. The PMR spectra show that the structured region includes most of the aromatic residues of both histones, at least two histidine residues of H2B and probably histidines 31 and 82 of histone H2A. The secondary structure of histones H2A and H2B is predicted using the Chou and Fasman procedure and comparisons are made between the predictions for histones of different species. These results in conjunction with the experimental evidence lead to the conclusion that at least residues 31-95 of H2A and residues 37-114 of H2B, i.e. the more apolar regions of the molecules, are involved in the tertiary structure of the H2A/H2B complex.  相似文献   

18.
Summary About 25% of total pyruvate kinase activity in human skeletal muscle is associated with the ribonucleoprotein complexes soluble in salt solutions of high ionic strength. These complexes, called form MB, crystallize readily from 48% saturated ammonium sulfate at pH 5.6.Crystalline preparations represent a heterogenous population of ribonucleoprotein complexes displaying a graduated activity and a variable RNA content. Free protein was not detected in the preparations.Fractionation of crystalline complexes in salt solutions of varying ionic strength and pH, followed by gel filtration on Sephadex G-200 led to the separation of two nucleoprotein fractions with very high specific activity. Fractions containing 30% RNA and 85% RNA respectively revealed a specific activity of 660–670 U/mg protein at 25°C.Pyruvate kinase form MA was extracted from muscle homogenate with distilled water, purified to homogeneity and crystallized. It contained less than 0.2% RNA and had a specific activity of 270 U/mg. Active ribonucleoprotein complexes gave in double immunodiffusion test the precipitation bands with the anti-MA sera at the same protein concentration of both antigens, MB and MA.Pyruvate kinase MB with high activity is sensitive to treatment with RNase. Digestion with RNase for 10 min at 25°C diminished the initial specific activity to about one third. Similar residual activity was found in crystalline ribonucleo protein complexes with low RNA content (3.5–20% RNA) which are resistant to further inactivation by RNase.These results implicate the enhancement and control of pyruvate kinase activity by RNA bound to the enzyme.This work was supported by a grant from the Biochemical and Biophysical Committee of Polish Academy of Sciences.  相似文献   

19.
J C Smith  R W Woody 《Biopolymers》1973,12(12):2657-2665
The polypeptide poly-γ-(n-dodecyl)-L -glutamate (PDLG) is soluble in hydrocarbon solvents such as hexane, cyclohexane, and dodecane. The CD spectra of PLDG in these solvents are reported here. These spectra are typical α-helix spectra and show none of the wavelength shifts and magnitude changes displayed by partially helical proteins in membrane preparations. This observation rules out the possibility that the membrane protein CD spectra result from solvent effects. The PDLG helix is stable in dodecane up to at least 70 °C. However, it is easily disrupted by trifluoroacetic acid, with the helix–coil transition centered at 3% TFA in hexane. Viscosity measurements of PDLG in dry dichloroacetic acid exhibit polyelectrolyte effects which can be suppressed by addition of several percent water.  相似文献   

20.
The absorption and circular dichroic (CD) spectra of parsley plastocyanin (PC) were measured in order to determine the effects of changes in primary amino acid sequence on both the copper center and protein components of the PC molecule. The near-ultraviolet (uv) absorption and CD spectra of parsley PC were found to be qualitatively similar to those of spinach, poplar, and lettuce PC, except for the near-uv CD spectrum of the reduced form at low pH (ca. pH 5.0). The CD spectrum of reduced parsley PC in the 250-265 nm wavelength region changes from positive to negative ellipticity upon reduction of pH, and is characterized by a pKa value of 5.7. This pKa value is the same as that for the protonation of the histidine 87 copper ligand, observed by NMR, and the change in conformation of the copper center. Similar processes are believed to occur in the other PC species at lower pH values. Thus, the pH-dependent perturbations of the near-uv CD spectra of reduced PC are interpreted as due to transitions in the reduced copper center. The increase in the near-uv absorption spectrum of reduced PC can be divided into pH-independent and pH-dependent portions. The pH-independent portion resembles the absorption spectrum of tetrahedral Cu(I) metallothionein, suggesting the presence of Cu(I)-Cys 84 and/or Cu(I)-Met 92 charge transfer transitions in the near-uv absorption spectra of reduced PC. The pH dependence of the absorption spectrum changes and the pH difference absorption spectrum indicate that tyrosine residues may contribute to at least a part of the pH-dependent portion of the absorption increase of reduced PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号