首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SHIP2 is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase which contains motifs susceptible to mediate protein-protein interaction. Using yeast two-hybrid, GST-pulldown, and coimmunoprecipitation studies, we isolated the CAP cDNA as a specific partner of SHIP2 proline-rich domain and showed by GST-pulldown experiments that the interaction took place with the SH3C of CAP. The interaction was not modulated in COS-7 cells stimulated by EGF neither in CHO cells overexpressing the insulin receptor in the presence or absence of insulin stimulation. We also showed that SHIP2 was able to coimmunoprecipitate with endogenous c-Cbl protein in the absence of CAP and with the insulin receptor in CHO-IR cell extracts. The presence of SHIP2 in a complex around the insulin receptor could account for the very specific increase in insulin sensitivity of SHIP2 knock-out mice.  相似文献   

2.
SHIP2 (SH2-containing inositol polyphosphate 5-phosphatase 2) is a phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase containing various motifs susceptible to mediate protein-protein interaction. In cell models, SHIP2 negatively regulates insulin signalling through its catalytic PtdIns(3,4,5)P(3) 5-phosphatase activity. We have previously reported that SHIP2 interacts with the c-Cbl associated protein (CAP) and c-Cbl, proteins implicated in the insulin cellular response regulating the small G protein TC10. The first steps of the TC10 pathway are the recruitment and tyrosine phosphorylation by the insulin receptor of the adaptor protein with Pleckstrin Homology and Src Homology 2 domains (APS). Herein, we show that SHIP2 can directly interact with APS in 3T3-L1 adipocytes and in transfected CHO-IR cells (Chinese hamster ovary cells stably transfected with the insulin receptor). Upon insulin stimulation, APS and SHIP2 are recruited to cell membranes as seen by immunofluorescence studies, which is consistent with their interaction. We also observed that SHIP2 negatively regulates APS insulin-induced tyrosine phosphorylation and consequently inhibits APS association with c-Cbl. APS, which specifically interacts with SHIP2, but not PTEN, in turn, increases the PtdIns(3,4,5)P(3) 5-phosphatase activity of SHIP2 in an inositol phosphatase assay. Co-transfection of SHIP2 and APS in CHO-IR cells further increases the inhibitory effect of SHIP2 on Akt insulin-induced phosphorylation. Therefore, the interaction between APS and SHIP2 provides to both proteins potential negative regulatory mechanisms to act on the insulin cascade.  相似文献   

3.
Ebselen, a multifunctional organoselenium compound, has been recognized as a potential treatment for diabetes-related disorders. However, the underlying mechanisms whereby ebselen regulates metabolic pathways remain elusive. We discovered that ebselen inhibits lipid phosphatase SHIP2 (Src homology 2 domain-containing inositol-5-phosphatase 2), an emerging drug target to ameliorate insulin resistance in diabetes. We found that ebselen directly binds to and inhibits the catalytic activity of the recombinant SHIP2 phosphatase domain and SHIP2 in cultured cells, the skeletal muscle and liver of the diabetic db/db mice, and the liver of the SHIP2 overexpressing (SHIP2-Tg) mice. Ebselen increased insulin-induced Akt phosphorylation in cultured myotubes, enhanced insulin sensitivity and protected liver tissue from lipid peroxidation and inflammation in the db/db mice, and improved glucose tolerance more efficiently than metformin in the SHIP2-Tg mice. SHIP2 overexpression abrogated the ability of ebselen to induce glucose uptake and reduce ROS production in myotubes and blunted the effect of ebselen to inhibit SHIP2 in the skeletal muscle of the SHIP2-Tg mice. Our data reveal ebselen as a potent SHIP2 inhibitor and demonstrate that the ability of ebselen to ameliorate insulin resistance and act as an antioxidant is at least in part mediated by the reduction of SHIP2 activity.  相似文献   

4.
SHIP2 belongs to the inositol 5-phosphatase family and is characterized by a phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)) 5-phosphatase activity. Evidence based on mice lacking the SHIP2 gene has demonstrated its predominant role in the control of insulin sensitivity. However, SHIP2 expression in both hematopoietic and non-hematopoietic cells suggests additional functions. SHIP2 was previously identified in chronic myelogenous progenitor cells, in which its constitutive tyrosine phosphorylation was reported by Wisniewski et al., [Blood 93 (1999) 2707-2720]. Here, we further investigated the function of SHIP2 in this hematopoietic and malignant context. A detailed analysis of the substrate specificity of SHIP2 indicated that this phosphatase is primarily directed towards PI(3,4,5)P(3) both in vitro and in K562 chronic myeloid leukemia cells. The SHIP2-mediated decrease in PI(3,4,5)P(3) levels and increase in phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) was accompanied by a reduction of cell proliferation, characterized by an accumulation of the cells in the G2/M phase of the cell cycle. Thus, in addition to its role in the control of insulin sensitivity, SHIP2 may also play a role in cell proliferation, at least in chronic myelogenous progenitor cells.  相似文献   

5.
The lipid phosphatase SH2 domain-containing lipid phosphatase (SHIP2) has been implicated in the regulation of insulin sensitivity, but its role in the therapy of insulin-resistant states remains to be defined. Here, we examined the effects of an antisense oligonucleotide (AS) therapy directed against SHIP2 on whole body insulin sensitivity and insulin action in liver and muscle tissue in a dietary rodent model of the metabolic syndrome, the high-fat-fed (HF) rat. Whole body insulin sensitivity was examined in vivo by insulin tolerance tests before and after the intraperitoneal application of an AS directed against SHIP2 (HF-SHIP2-AS) or a control AS (HF-Con-AS) in HF rats. Insulin action in liver and muscle was assayed by measuring the activation of protein kinase B (Akt) and insulin receptor substrate (IRS)-1/2 after a portal venous insulin bolus. SHIP2 mRNA and protein content were quantified in these tissues by real-time PCR and immunoblotting, respectively. In HF-SHIP2-AS, whole body glucose disposal after an insulin bolus was markedly elevated compared with HF-Con-AS. In liver, insulin activated Akt similarly in both groups. In muscle, insulin did not clearly activate Akt in HF-Con-AS animals, whereas insulin-induced Akt phosphorylation was sustained in SHIP2-AS-treated rats. IRS-1/2 activation did not differ between the experimental groups. SHIP2 mRNA and protein content were markedly reduced only in muscle. In standard diet-fed controls, SHIP2-AS reduced SHIP2 protein levels in liver and muscle, but it had no significant effect on insulin sensitivity. We conclude that treatment with SHIP2-AS can rapidly improve muscle insulin sensitivity in dietary insulin resistance. The long-term feasibility of such a strategy should be examined further.  相似文献   

6.
SH2-containing inositol phosphatase 2 (SHIP2) is a physiologically important negative regulator of insulin signaling by hydrolyzing the phosphatidylinositol (PI) 3-kinase product PI 3,4,5-trisphosphate in the target tissues of insulin. Targeted disruption of the SHIP2 gene in mice resulted in increased insulin sensitivity without affecting biological systems other than insulin signaling. Therefore, we investigated the molecular mechanisms by which SHIP2 specifically regulates insulin-induced metabolic signaling in 3T3-L1 adipocytes. Insulin-induced phosphorylation of Akt, one of the molecules downstream of PI3-kinase, was inhibited by expression of wild-type SHIP2, whereas it was increased by expression of 5'-phosphatase-defective (DeltaIP) SHIP2 in whole cell lysates. The regulatory effect of SHIP2 was mainly seen in the plasma membrane (PM) and low density microsomes but not in the cytosol. In this regard, following insulin stimulation, a proportion of Akt2, and not Akt1, appeared to redistribute from the cytosol to the PM. Thus, insulin-induced phosphorylation of Akt2 at the PM was predominantly regulated by SHIP2, whereas the phosphorylation of Akt1 was only minimally affected. Interestingly, insulin also elicited a subcellular redistribution of both wild-type and DeltaIP-SHIP2 from the cytosol to the PM. The degree of this redistribution was inhibited in part by pretreatment with PI3-kinase inhibitor. Although the expression of a constitutively active form of PI3-kinase myr-p110 also elicited a subcellular redistribution of SHIP2 to the PM, expression of SHIP2 appeared to affect the myr-p110-induced phosphorylation, and not the translocation, of Akt2. Furthermore, insulin-induced phosphorylation of Akt was effectively regulated by SHIP2 in embryonic fibroblasts derived from knockout mice lacking either insulin receptor substrate-1 or insulin receptor substrate-2. These results indicate that insulin specifically stimulates the redistribution of SHIP2 from the cytosol to the PM independent of 5'-phosphatase activity, thereby regulating the insulin-induced translocation and phosphorylation of Akt2 at the PM.  相似文献   

7.
Inhibition of the lipid phosphatase SH2-domain containing inositol phosphatase 2 (SHIP2) in L6-C10 muscle cells, in 3T3-L1 adipocytes and in the liver of db/db mice has been shown to ameliorate insulin signal transduction and established SHIP2 as a negative regulator of insulin action. Here we show that SHIP2 inhibition in INS1E insulinoma cells increased Akt, glycogen synthase kinase 3 and extracellular signal-regulated kinases 1 and 2 phosphorylation. SHIP2 inhibition did not prevent palmitate-induced apoptosis, but increased cell proliferation. Our data raise the interesting possibility that SHIP2 inhibition exerts proliferative effects in beta-cells and further support the attractiveness of a specific inhibition of SHIP2 for the treatment of type 2 diabetes.  相似文献   

8.
SH2-containing inositol 5'-phosphatase (SHIP) plays a negative regulatory role in hematopoietic cells. We have now cloned the rat SHIP isozyme (SHIP2) cDNA from skeletal muscle, which is one of the most important target tissue of insulin action. Rat SHIP2 cDNA encodes a 1183-amino-acid protein that is 45% identical with rat SHIP. Rat SHIP2 contains an amino-terminal SH2 domain, a central 5'-phosphoinositol phosphatase activity domain, and a phosphotyrosine binding (PTB) consensus sequence and a proline-rich region at the carboxyl tail. Specific antibodies to SHIP2 were raised and the function of SHIP2 was studied by stably overexpressing rat SHIP2 in Rat1 fibroblasts expressing human insulin receptors (HIRc). Endogenous SHIP2 underwent insulin-mediated tyrosine phosphorylation and phosphorylation was markedly increased when SHIP2 was overexpressed. Although overexpression of SHIP2 did not affect insulin-induced tyrosine phosphorylation of the insulin receptor beta-subunit and Shc, subsequent association of Shc with Grb2 was inhibited, possibly by competition between the SH2 domains of SHIP2 and Grb2 for the Shc phosphotyrosine. As a result, insulin-stimulated MAP kinase activation was reduced in SHIP2-overexpressing cells. Insulin-induced tyrosine phosphorylation of IRS-1, IRS-1 association with the p85 subunit of PI3-kinase, and PI3-kinase activation were not affected by overexpression of SHIP2. Interestingly, although both PtdIns-(3,4,5)P3 and PtdIns(3,4)P2 have been implicated in the regulation of Akt activity in vitro, overexpression of SHIP2 inhibited insulin-induced Akt activation, presumably by its 5'-inositol phosphatase activity. Furthermore, insulin-induced thymidine incorporation was decreased by overexpression of SHIP2. These results indicate that SHIP2 plays a negative regulatory role in insulin-induced mitogenesis, and regulation of the Shc. Grb2 complex and of the downstream products of PI3-kinase provides possible mechanisms of SHIP2 action in insulin signaling.  相似文献   

9.
The role of the inositol lipid 5-phosphatase (SHIP2) in preadipocyte signaling is not known. Although overexpression of SHIP2 inhibited proliferation and (3)H-thymidine incorporation in 3T3-L1 preadipocytes, there was no effect on insulin-induced adipogenesis. Insulin promoted SHIP2 tyrosine phosphorylation in differentiated 3T3-L1 adipocytes, but did not do so in preadipocytes. The absence of SHIP2 tyrosine phosphorylation suggests a potential explanation for the isolated rise in PI(3,4,5)P3, without any changes in PI(3,4)P2, previously observed following insulin treatment of these cells. Lack of SHIP2 tyrosine phosphorylation by insulin was also observed in primary cultures of human abdominal subcutaneous preadipocytes. These cells also produced PI(3,4,5)P3, but not PI(3,4)P2, in response to insulin. Comparison of insulin vs. PDGF treatment on SHIP2 tyrosine phosphorylation in 3T3-L1 and human preadipocytes revealed that only PDGF, which stimulates the accumulation of PI(3,4,5)P3 as well as PI(3,4)P2, was active in this regard, and only PDGF promoted the association of 52 kDa form of Shc with SHIP2. Nevertheless, both insulin and PDGF were equally effective in translocating SHIP2 to the plasma membrane in 3T3-L1 preadipocytes. Lack of SHIP2 tyrosine phosphorylation may account for the insulin-specific inositol phospholipid pattern of accumulation in preadipocytes.  相似文献   

10.
The inositol phosphatase SHIP has been implicated in signaling events downstream of a variety of receptors and is thought to play an inhibitory role in stimulated B cells. We and others have reported that SHIP is rapidly tyrosine phosphorylated upon B cell antigen receptor (BCR) cross-linking and forms a complex with the adapter protein Shc. Here, we report that cross-linking of the BCR induces association between Grb2 and SHIP as well as association between Shc and SHIP. We made use of a Grb2-deficient B cell line to demonstrate both in vitro and in vivo that Grb2 expression is required for the efficient association between Shc and SHIP. The results indicate that SHIP, Shc, and Grb2 form a ternary complex in stimulated B cells, with Grb2 stabilizing the interaction between Shc and SHIP. The interactions between Shc, Grb2, and SHIP are therefore analogous to the interactions between Shc, Grb2, and SOS. Shc and Grb2 may help to localize SHIP to the cell membrane, regulating SHIP's inhibitory function following BCR stimulation.  相似文献   

11.
The lipid phosphatase SHIP2 (Src homology 2 domain containing inositol 5-phosphatase 2) has been shown to be expressed in nonhemopoietic and hemopoietic cells. It has been implicated in signaling events initiated by several extracellular signals, such as epidermal growth factor (EGF) and insulin. In COS-7 cells, SHIP2 was tyrosine-phosphorylated at least at two separated tyrosine phosphorylation sites in response to EGF. SHIP2 was coimmunoprecipitated with the EGF receptor (EGFR) and also with the adaptor protein Shc. A C-terminal truncated form of SHIP2 that lacks the 366 last amino acids, referred to as tSHIP2, was also precipitated with the EGFR when transfected in COS-7 cells. The Src homology 2 domain of SHIP2 was unable to precipitate the EGFR in EGF-stimulated cells. Moreover, when transfected in COS-7 cells, it could not be detected in immunoprecipitates of the EGFR. When the His-tagged full-length enzyme was expressed in COS-7 cells and stained with anti-His6 monoclonal antibody, a signal was observed at plasma membranes in EGF-stimulated cells that colocalize with the EGFR by double staining. Upon stimulation by EGF, phosphatidylinositol 3,4,5-trisphosphate and protein kinase B activity were decreased in SHIP2-transfected COS-7 cells as compared with the vector alone. SHIP2 appears therefore in a tyrosine-phosphorylated complex with at least two other proteins, the EGFR and Shc.  相似文献   

12.
Hepatic de-novo lipogenesis and production of triglyceride rich very low density lipoprotein (VLDL) is increased in the state of insulin resistance, however, the role of a negative regulator of the insulin signaling pathway, the SH2 domain-containing inositol 5-phosphatase (SHIP2) in this process, remains unknown. In the present study, we studied the molecular mechanisms linking SHIP2 expression to metabolic dyslipidemia using overexpression or suppression of SHIP2 gene in HepG2 cells exposed to high glucose (33 mM). The results showed that high glucose induced SHIP2 mRNA and protein levels in HepG2 cells. Overexpression of the dominant negative mutant SHIP2 (SHIP2-DN) ameliorated high glucose-induced de-novo lipogenesis and secretion of apoB containing lipoprotein in HepG2 cells, as demonstrated by a reduction in both secreted apoB and MTP expression, and decreased triglyceride levels and the expression of lipogenic genes such as SREBP1c, FAS and ACC. Overexpression of the SHIP2-DN decreased high glucose-induced apoB containing lipoproteins secretion via reduction in ROS generation, JNK phosphorylation and Akt activation. Furthermore, using the specific inhibitor and activator, it was found that the AMPK/mTOR/SREBP1 is the signaling pathway that mediates the effects of SHIP2 modulation on hepatic de-novo lipogenesis. Taken together, these findings suggest that SHIP2 is an important regulator of hepatic lipogenesis and lipoprotein secretion in insulin resistance state.  相似文献   

13.
The SH2 domain containing inositol polyphosphate 5-phosphatase-2: SHIP2   总被引:2,自引:0,他引:2  
Phosphoinositides are membrane-bound signaling molecules that recruit, activate and localize target effectors to intracellular membranes regulating apoptosis, cell proliferation, insulin signaling and membrane trafficking. The SH2 domain containing inositol polyphosphate 5-phosphatase-2 (SHIP2) hydrolyzes phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) generating phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). Overexpression of SHIP2 inhibits insulin-stimulated phosphoinositide 3-kinase (PI3K) dependent signaling events. Analysis of diabetic human subjects has revealed an association between SHIP2 gene polymorphisms and type 2 diabetes mellitus. Genetic ablation of SHIP2 in mice has generated conflicting results. SHIP2 knockout mice were originally reported to show lethal neonatal hypoglycemia resulting from insulin hypersensitivity, but in addition to inactivating the SHIP2 gene, the Phox2a gene was also inadvertently deleted. Another SHIP2 knockout mouse has now been generated which inactivates the SHIP2 gene but leaves Phox2a intact. These animals show normal insulin and glucose tolerance but are highly resistant to weight gain on high fat diets, exhibiting an obesity-resistant phenotype. Therefore, SHIP2 remains a significant therapeutic target for the treatment of both obesity and type 2 diabetes.  相似文献   

14.
Endocytosis of Eph receptors is critical for a number of biological processes, including modulating axon growth cone collapse response and regulating cell surface levels of receptor in epithelial cells. In particular, ephrin-A ligand stimulation of tumor cells induces EphA2 receptor internalization and degradation, a process that has been explored as a means to reduce tumor malignancy. However, the mechanism and regulation of ligand-induced Eph receptor internalization are not well understood. Here we show that SHIP2 (Src homology 2 domain-containing phosphoinositide 5-phosphatase 2) is recruited to activated EphA2 via a heterotypic sterile alpha motif (SAM)-SAM domain interaction, leading to regulation of EphA2 internalization. Overexpression of SHIP2 inhibits EphA2 receptor endocytosis, whereas suppression of SHIP2 expression by small interfering RNA-mediated gene silencing promotes ligand-induced EphA2 internalization and degradation. SHIP2 regulates EphA2 endocytosis via phosphatidylinositol 3-kinase-dependent Rac1 activation. Phosphatidylinositol 3,4,5-trisphosphate levels are significantly elevated in SHIP2 knockdown cells, phosphatidylinositol 3-kinase inhibitor decreases phosphatidylinositol 3,4,5-trisphosphate levels and suppresses increased EphA2 endocytosis. Ephrin-A1 stimulation activates Rac1 GTPase, and the Rac1-GTP levels are further increased in SHIP2 knockdown cells. A dominant negative Rac1 GTPase effectively inhibited ephrin-A1-induced EphA2 endocytosis. Together, our findings provide evidence that recruitment of SHIP2 to EphA2 attenuates a positive signal to receptor endocytosis mediated by phosphatidylinositol 3-kinase and Rac1 GTPase.  相似文献   

15.
The Src homology 2-containing 5' inositolphosphatases (SHIP and SHIP2) dephosphorylate 3'-phosphorylated PtdIns on the 5' position, decreasing intracellular levels of PtdIns 3,4,5-P3. In the current study, we investigated the role of SHIP in insulin and platelet-derived growth factor (PDGF) signaling by expressing wild-type (WT) and catalytically inactive SHIPDeltaIP in 3T3-L1 adipocytes, utilizing adenoviral infection. Insulin and PDGF both stimulated tyrosine phosphorylation of SHIP-WT and of SHIPDeltaIP, and tyrosine phosphorylation of SHIP-associated proteins increased after ligand stimulation. Tyrosine-phosphorylated PDGFR, IR, and insulin receptor substrate-1 all immunoprecipitated with SHIP. Expression of WT and DeltaIP mutant SHIP did not affect tyrosine phosphorylation of either the insulin or the PDGF receptor, or the expression of insulin receptor substrate-1 and Shc proteins. Both SHIP-WT and SHIPDeltaIP blocked insulin and PDGF-induced MAPK and MAPK kinase phosphorylation as well as, GTP-bound Ras activity, suggesting that the catalytic activity of SHIP is not necessary for these effects. SHIP associated with Shc upon ligand stimulation, indicating that the SHIP-Shc association is phosphorylation dependent. This association was primarily between the SHIP-SH2 domain and the phosphorylated tyrosine residues of Shc because no association was observed when the 3YF-Shc mutant was coexpressed with SHIP. The Shc*Grb2 association was not compromised by SHIP expression, despite complete inhibition of the Ras/MAPK pathway. Interestingly, son-of-sevenless (SOS) protein normally found in Grb2 complexes was markedly reduced in SHIP expressing cells, whereas the displaced SOS was recovered when the post-Grb2-IP supernatants were blotted with anti-SOS antibody. Thus, SHIP competes son-of-sevenless (SOS) away from Shc-Grb2. In summary, 1) SHIP-WT and SHIPDeltaIP expression inhibit insulin and PDGF stimulated Ras, MAPK kinase, and MAPK activities; 2) SHIP associates with tyrosine phosphorylated Shc, and the proline-rich sequences in SHIP associate with Grb2 and titrate out SOS to form Shc*Grb2*SHIP complexes; and 3) dissociation of SOS from the Shc*Grb2 complex inhibits Ras GTP loading, leading to decreased signaling through the MAPK pathway.  相似文献   

16.
Phosphoinositide lipid second messengers are integral components of signaling pathways mediated by insulin, growth factors, and integrins. SHIP2 dephosphorylates phosphatidylinositol 3,4,5-trisphosphate generated by the activated phosphatidylinositol 3'-kinase. SHIP2 down-regulates insulin signaling and is present at higher levels in diabetes and obesity. SHIP2 associates with p130Cas and filamin, regulators of cell adhesion/migration and cytoskeleton, influencing cell adhesion/spreading. Type I collagen specifically induces Src-mediated tyrosine phosphorylation of SHIP2. To better understand SHIP2 function, we employed RNA interference (RNAi) approach to silence the expression of the endogenous SHIP2 in HeLa cells. Suppression of SHIP2 levels caused severe F-actin deformities characterized by weak cortical actin and peripheral actin spikes. SHIP2 RNAi cells displayed cell-spreading defects involving a notable absence of focal contact structures and the formation of multiple slender membrane protrusions capped by actin spikes. Furthermore, decreased SHIP2 levels altered distribution of early endocytic antigen 1 (EEA1)-positive endocytic vesicles and of vesicles containing internalized epidermal growth factor (EGF) and transferrin. EGF treatment of SHIP2 RNAi cells led to the following: enhanced EGF receptor (EGFR) degradation; increased EGFR ubiquitination; and increased association of EGFR with c-Cbl ubiquitin ligase. Taken together, these experiments demonstrate that SHIP2 functions in the maintenance and dynamic remodeling of actin structures as well as in endocytosis, having a major impact on ligand-induced EGFR internalization and degradation. Accordingly, we suggest that, in HeLa cells, SHIP2 plays a distinct role in signaling pathways mediated by integrins and growth factor receptors.  相似文献   

17.
Glucose homeostasis is controlled by insulin in part through the stimulation of glucose transport in muscle and fat cells. This insulin signaling pathway requires phosphatidylinositol (PI) 3-kinase-mediated 3'-polyphosphoinositide generation and activation of Akt/protein kinase B. Previous experiments using dominant negative constructs and gene ablation in mice suggested that two phosphoinositide phosphatases, SH2 domain-containing inositol 5'-phosphatase 2 (SHIP2) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulate this insulin signaling pathway. Here we directly tested this hypothesis by selectively inhibiting the expression of SHIP2 or PTEN in intact cultured 3T3-L1 adipocytes through the use of short interfering RNA (siRNA). Attenuation of PTEN expression by RNAi markedly enhanced insulin-stimulated Akt and glycogen synthase kinase 3alpha (GSK-3alpha) phosphorylation, as well as deoxyglucose transport in 3T3-L1 adipocytes. In contrast, depletion of SHIP2 protein by about 90% surprisingly failed to modulate these insulin-regulated events under identical assay conditions. In control studies, no diminution of insulin signaling to the mitogen-activated protein kinases Erk1 and Erk2 was observed when either PTEN or SHIP2 were depleted. Taken together, these results demonstrate that endogenous PTEN functions as a suppressor of insulin signaling to glucose transport through the PI 3-kinase pathway in cultured 3T3-L1 adipocytes.  相似文献   

18.
Genetic ablation of Inppl1, which encodes SHIP2 (SH2-domain containing inositol 5-phosphatase 2), was previously reported to induce severe insulin sensitivity, leading to early postnatal death. In the previous study, the targeting construct left the first eighteen exons encoding Inppl1 intact, generating a Inppl1(EX19-28-/-) mouse, and apparently also deleted a second gene, Phox2a. We report a new SHIP2 knockout (Inppl1(-/-)) targeted to the translation-initiating ATG, which is null for Inppl1 mRNA and protein. Inppl1(-/-) mice are viable, have normal glucose and insulin levels, and normal insulin and glucose tolerances. The Inppl1(-/-) mice are, however, highly resistant to weight gain when placed on a high-fat diet. These results suggest that inhibition of SHIP2 would be useful in the effort to ameliorate diet-induced obesity, but call into question a dominant role of SHIP2 in modulating glucose homeostasis.  相似文献   

19.
Lipid phosphatase SHIP2 [Src homology 2 (SH2)-containing inositol 5'-phosphatase 2] has been shown to be a physiologically critical negative regulator of insulin signaling. We investigated the molecular mechanism by which SHIP2 negatively regulates insulin-induced phosphorylation of Akt, a key downstream molecule of phosphatidylinositol 3-kinase important for the biological action of insulin. Overexpression of wild-type SHIP2 (WT-SHIP2) inhibited insulin-induced phosphorylation of Akt at both Thr(308) and Ser(473) in Rat1 fibroblasts expressing insulin receptors. The degree of inhibition was less in the cells expressing either a mutant SHIP2 with R47Q change (R/Q-SHIP2) in the SH2 domain, or a mutant SHIP2 with Y987F change (Y/F-SHIP2) in the C-terminal tyrosine phosphorylation site. However, on addition of a myristoylation signal, WT-SHIP2, R/Q-SHIP2, and Y/F-SHIP2 all efficiently inhibited insulin-induced Akt phosphorylation at both residues, whereas a 5'-phosphatase-defective mutant SHIP2 (deltaIP-SHIP2) with the myristoylation signal did not. Interestingly, the degree of inhibition of Akt phosphorylation by R/Q-SHIP2 and Y/F-SHIP2 is well correlated with the extent of their association with Shc. In addition, overexpression of WT-Shc increased the insulin-induced association of SHIP2 with Shc, whereas a decrease in the amount of Shc on expression of antisense Shc mRNA led to a reduction in the SHIP2-Shc association. Furthermore, the inhibitory effect on insulin-induced Akt phosphorylation by WT-SHIP2 was decreased in antisense-Shc cells. These results indicate that the membrane localization of SHIP2 with its 5'-phosphatase activity is required for negative regulation of insulin-induced Akt phosphorylation and that the localization is regulated, at least in part, by the association of SHIP2 with Shc in Rat1 fibroblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号