首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ctenophores are biradially symmetrical animals. The body is composed of four identical quadrants which are organized along an oral-aboral axis. Most species have eight comb rows, two tentacles, and an apical organ (located on the aboral surface). During embryogenesis there is a fixed pattern of cleavage, a precocious specification of blastomere developmental potential, and an inability to regulate for portions of the embryo that have been removed. When blastomeres are separated at the two-cell stage each blastomere develops into a "half-animal" with four comb rows, one tentacle, and half an apical organ. In contrast, adult ctenophores regenerate readily. When an adult ctenophore is cut in half to produce "half-animals," in most cases each half regenerates the missing half. In some cases, however, bisected animals remain as "half-animals" which repair the wound site but do not replace all of the missing structures. When animals are cut in half along the tentacular or esophageal axis at different stages of embryogenesis a transition period is detected when the capacity for adult regeneration begins. This transition occurs at the time when the formation of the apical organ is complete and comb row function becomes coordinated. Embryos bisected prior to this time remain as "half-animals" even after growing to large reproductive sizes, while animals bisected after the transition period usually regenerate the missing structures within 2-3 days. When adult "half-animals" (produced by bisection either before or after the transition period) are cut into "quarter-pieces," the pieces regenerate to form either "half-animals" or whole animals. Thus, "half-animals" produced prior to the transition period--although they failed to undergo embryonic regulation--have not irreversibly lost the capacity to form whole animals if challenged to regenerate during adult stages. When aboral blastomeres destined to form the apical organ, tentacles, and comb rows are removed from early cleavage stages (prior to the transition period), the embryo does not form these structures at the appropriate time. However, the resulting deficient adults spontaneously form these structures from remaining blastomere lineages soon after hatching. These experiments suggest that as long as some quadrant-specific cells of the oral pole are present at the time of the transition period, the structures of that quadrant will be spontaneously replaced during the adult period.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Signalling through the Wnt family of secreted proteins originated in a common metazoan ancestor and greatly influenced the evolution of animal body plans. In bilaterians, Wnt signalling plays multiple fundamental roles during embryonic development and in adult tissues, notably in axial patterning, neural development and stem cell regulation. Studies in various cnidarian species have particularly highlighted the evolutionarily conserved role of the Wnt/β-catenin pathway in specification and patterning of the primary embryonic axis. However in another key non-bilaterian phylum, Ctenophora, Wnts are not involved in early establishment of the body axis during embryogenesis. We analysed the expression in the adult of the ctenophore Pleurobrachia pileus of 11 orthologues of Wnt signalling genes including all ctenophore Wnt ligands and Fz receptors and several members of the intracellular β-catenin pathway machinery. All genes are strongly expressed around the mouth margin at the oral pole, evoking the Wnt oral centre of cnidarians. This observation is consistent with primary axis polarisation by the Wnts being a universal metazoan feature, secondarily lost in ctenophores during early development but retained in the adult. In addition, local expression of Wnt signalling genes was seen in various anatomical structures of the body including in the locomotory comb rows, where their complex deployment suggests control by the Wnts of local comb polarity. Other important contexts of Wnt involvement which probably evolved before the ctenophore/cnidarian/bilaterian split include proliferating stem cells and progenitors irrespective of cell types, and developing as well as differentiated neuro-sensory structures.  相似文献   

3.
Ctenophores, or comb jellies, are a distinct phylum of marine zooplankton with eight meridional rows of giant locomotory comb plates. Comb plates are the largest ciliary structures known, and provide unique experimental advantages for investigating the biology of cilia. Here, I review published and unpublished work on how ctenophores exploit both motile and sensory functions of cilia for much of their behavior. The long‐standing problem of ciliary coordination has been elucidated by experiments on a variety of ctenophores. The statocyst of ctenophores is an example of how mechanosensory properties of motile cilia orient animals to the direction of gravity. Excitation or inhibition of comb row beating provides adaptive locomotory responses, and global reversal of beat direction causes escape swimming. The diverse types of prey and feeding mechanisms of ctenophores are related to radiation in body form and morphology. The cydippid Pleurobrachia catches copepods on tentacles and undergoes unilateral ciliary reversal to sweep prey into its mouth. Mnemiopsis uses broad muscular lobes and ciliated auricles to capture and ingest prey. Beroë has giant smooth muscles and toothed macrocilia to rapidly engulf or bite through ctenophore prey, and uses reversible tissue adhesion to keep its mouth closed while swimming. Ciliary motor responses are calcium‐dependent, triggered by voltage‐activated calcium channels located along the length (reversed beating) or at the base (activation of beating) of ciliary membranes. Ciliary and muscular responses to stimuli are regulated by epithelial and mesogleal nerve nets with ultrastructurally identifiable synapses onto effector cells. Post‐embryonic patterns of comb row development in larval and adult stages are described and compared with regeneration of comb plates after surgical removal. Truly, cilia and ctenophores, like love and marriage, go together like a horse and carriage.  相似文献   

4.
The development of comb rows in larval and adult Mnemiopsis leidyi and adult Pleurobrachia pileus is compared to regeneration of comb plates in these ctenophores. Late gastrula embryos and recently hatched cydippid larvae of Mnemiopsis have five comb plates in subsagittal rows and six comb plates in subtentacular rows. Subsagittal rows develop a new (sixth) comb plate and both types of rows add plates at similar rates until larvae reach the transition to the lobate form at ~5 mm size. New plate formation then accelerates in subsagittal rows that later extend on the growing oral lobes to become twice the length of subtentacular rows. Interplate ciliated grooves (ICGs) develop in an aboral‐oral direction along comb rows, but ICG formation itself proceeds from oral to aboral between plates. New comb plates in Mnemiopsis larvae are added at both aboral and oral ends of rows. At aboral ends, new plates arise as during regeneration: local widening of a ciliated groove followed by formation of a short split plate that grows longer and wider and joins into a common plate. At oral ends, new plates arise as a single tuft of cilia before an ICG appears. Adult Mnemiopsis continue to make new plates at both ends of rows. The frequency of new aboral plate formation varies in the eight rows of an animal and seems unrelated to body size. In Pleurobrachia that lack ICGs, new comb plates at aboral ends arise between the first and second plates as a single small nonsplit plate, located either on the row midline or off‐axis toward the subtentacular plane. As the new (now second) plate grows larger, its distance from the first and third plates increases. Size of the new second plate varies within the eight rows of the same animal, indicating asynchronous formation of plates as in Mnemiopsis. New oral plates arise as in Mnemiopsis. The different modes of comb plate formation in Mnemiopsis versus Pleurobrachia are accounted for by differences in mesogleal firmness and mechanisms of ciliary coordination. In both cases, the body of a growing ctenophore is supplied with additional comb plates centripetally from opposite ends of the comb rows. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The Ediacaran fossil Eoandromeda octobrachiata had a high conical body with eight arms in helicospiral arrangement along the flanks. The arms carried transverse bands proposed to be homologous to ctenophore ctenes (comb plates). Eoandromeda is interpreted as an early stem‐group ctenophore, characterized by the synapomorphies ctenes, comb rows, and octoradial symmetry but lacking crown‐group synapomorphies such as tentacles, statoliths, polar fields, and biradial symmetry. It probably had a pelagic mode of life. The early appearance in the fossil record of octoradial ctenophores is most consistent with the Planulozoa hypothesis (Ctenophora is the sister group of Cnidaria + Bilateria) of metazoan phylogeny.  相似文献   

6.
Possible ctenophoran affinities of the Precambrian "sea-pen" Rangea   总被引:3,自引:0,他引:3  
Dzik J 《Journal of morphology》2002,252(3):315-334
The Namibian Kuibis Quartzite fossils of Rangea are preserved three-dimensionally owing to incomplete collapse of the soft tissues under the load of instantaneously deposited sand. The process of fossilization did not reproduce the original external morphology of the organism but rather the inner surface of collapsed organs, presumably a system of sacs connected by a medial canal. The body of Rangea had tetraradial symmetry, a body plan shared also by the White Sea Russian fossil Bomakellia and possibly some other Precambrian frond-like fossils. They all had a complex internal anatomy, smooth surface of the body, and radial membranes, making their alleged colonial nature unlikely. Despite a different style of preservation, the Middle Cambrian Burgess Shale frond-like Thaumaptilon shows several anatomical similarities to Rangea. The body plan of the Burgess Shale ctenophore Fasciculus, with its numerous, pinnately arranged comb organs, is in many respects transitional between Thaumaptilon and the Early Cambrian ctenophore Maotianoascus from the Chengjiang fauna of South China. It is proposed that the irregularly distributed dark spots on the fusiform units of the petaloid of Thaumaptilon represent a kind of macrocilia and that the units are homologous with the ctenophoran comb organs. These superficial structures were underlain by the complex serial organs, well represented in the fossils of Rangea. The Precambrian "sea-pens" were thus probably sedentary ancestors of the ctenophores.  相似文献   

7.
Ctenophores are marine invertebrates that develop rapidly and directly into juvenile adults. They are likely to be the simplest metazoans possessing definitive muscle cells and are possibly the sister group to the Bilateria. All ctenophore embryos display a highly stereotyped, phylum-specific pattern of development in which every cell can be identified by its lineage history. We generated a cell lineage fate map for Mnemiopsis leidyi by injecting fluorescent lineage tracers into individual blastomeres up through the 60-cell stage. The adult ctenophore body plan is composed of four nearly identical quadrants organized along the oral-aboral axis. Each of the four quadrants is derived largely from one cell of the four-cell-stage embryo. At the eight-cell stage each quadrant contains a single E ("end") and M ("middle") blastomere. Subsequently, micromeres are formed first at the aboral pole and later at the oral pole. The ctene rows, apical organ, and tentacle apparatus are complex structures that are generated by both E and M blastomere lineages from all four quadrants. All muscle cells are derived from micromeres born at the oral pole of endomesodermal precursors (2M and 3E macromeres). While the development of the four quadrants is similar, diagonally opposed quadrants share more similarities than adjacent quadrants. Adult ctenophores possess two diagonally opposed endodermal anal canals that open at the base of the apical organ. These two structures are derived from the two diagonally opposed 2M/ macromeres. The two opposing 2M/ macromeres generated a unique set of circumpharyngeal muscle cells, but do not contribute to the anal canals. No other lineages displayed such diagonal asymmetries. Clones from each blastomere yielded regular, but not completely invariant patterns of descendents. Ectodermal descendents normally, but not always, remained within their corresponding quadrants. On the other hand, endodermal and mesodermal progeny dispersed throughout the body. The variability in the exact complements of adult structures, along with previously published cell deletion experiments, demonstrates that cell interactions are required for normal cell fate determination. Ctenophore embryos, like those of many bilaterian phyla (e.g., spiralians, nematodes, and echinoids), display a highly stereotyped cleavage program in which some, but not all, blastomeres are determined at the time of their birth. The results suggest that mesodermal tissues originally evolved from endoderm tissue.  相似文献   

8.
《Zoology (Jena, Germany)》2015,118(2):102-114
Ctenophores are a phylum of non-bilaterian marine (mostly planktonic) animals, characterised by several unique synapomorphies (e.g., comb rows, apical organ). Relationships between and within the nine recognised ctenophore orders are far from understood, notably due to a paucity of phylogenetically informative anatomical characters. Previous attempts to address ctenophore phylogeny using molecular data (18S rRNA) led to poorly resolved trees but demonstrated the paraphyly of the order Cydippida. Here we compiled an updated 18S rRNA data set, notably including a few newly sequenced species representing previously unsampled families (Lampeidae, Euryhamphaeidae), and we constructed an additional more rapidly evolving ITS1 + 5.8S rRNA + ITS2 alignment. These data sets were analysed separately and in combination under a probabilistic framework, using different methods (maximum likelihood, Bayesian inference) and models (e.g., doublet model to accommodate secondary structure; data partitioning). An important lesson from our exploration of these datasets is that the fast-evolving internal transcribed spacer (ITS) regions are useful markers for reconstructing high-level relationships within ctenophores. Our results confirm the paraphyly of the order Cydippida (and thus a “cydippid-like” ctenophore common ancestor) and suggest that the family Mertensiidae could be the sister group of all other ctenophores. The family Lampeidae (also part of the former “Cydippida”) is probably the sister group of the order Platyctenida (benthic ctenophores). The order Beroida might not be monophyletic, due to the position of Beroe abyssicola outside of a clade grouping the other Beroe species and members of the “Cydippida” family Haeckeliidae. Many relationships (e.g. between Pleurobrachiidae, Beroida, Cestida, Lobata, Thalassocalycida) remain unresolved. Future progress in understanding ctenophore phylogeny will come from the use of additional rapidly evolving markers and improvement of taxonomic sampling.  相似文献   

9.
Ctenophores undergo locomotion via the metachronal beating of eight longitudinally arrayed rows of comb plate cilia. These cilia are normally derived from two embryonic lineages, which include both daughters of the four e1 micromeres (e11 and e12) and a single daughter of the four m1 micromeres (the m12 micromeres). Although the e1 lineage is established autonomously, the m1 lineage requires an inductive interaction from the e1 lineage to contribute to comb plate formation. Successive removal of the e1 progeny at later stages of development indicates that this interaction takes place after the 32-cell stage and likely proceeds over a prolonged period of development. Normally, the e1, cell lies in closest proximity to the m12 cell that generates comb plate cilia; however, either of the e1 daughters (e11 or e12) is capable of emitting the signal required for m1 descendants to form comb plates. Previous cell lineage analyses indicate that the two e1 daughters generate the same suite of cell fates. On the other hand, the m1 daughters (m11 and m12) normally give rise to different cell fates. Reciprocal m1 daughter deletions show that in the absence of one daughter, the other cell can generate all the cell types normally formed by the missing cell. Together, these findings demonstrate that the two m1 daughters (m11 and m12) represent an embryonic equivalence group or field and that differences in the fates of the two m1 daughters are normally controlled by cell-cell interactions. These combined properties of ctenophore development, including the utilization of deterministic cleavage divisions, inductive interactions, and the establishment of embryonic fields or equivalence groups, are remarkably similar to those present in the development of various bilaterian metazoans.  相似文献   

10.
A scrutiny of the literature shows that the ctenophore Haeckelia (= Euchlora) ruba has only kleptocnidae and that Hydroctena salenskii is a ctenophore without special cnidarian affinities. The “missing links” between cnidarians and ctenophores have thus turned out to be based on misinterpretations and must be excluded from future discussions on phylogeny.  相似文献   

11.
《The Journal of cell biology》1994,125(5):1127-1135
To image changes in intraciliary Ca controlling ciliary motility, we microinjected Ca Green dextran, a visible wavelength fluorescent Ca indicator, into eggs or two cell stages of the ctenophore Mnemiopsis leidyi. The embryos developed normally into free-swimming, approximately 0.5 mm cydippid larvae with cells and ciliary comb plates (approximately 100 microns long) loaded with the dye. Comb plates of larvae, like those of adult ctenophores, undergo spontaneous or electrically stimulated reversal of beat direction, triggered by Ca influx through voltage-sensitive Ca channels. Comb plates of larvae loaded with Ca Green dextran emit spontaneous or electrically stimulated fluorescent flashes along the entire length of their cilia, correlated with ciliary reversal. Fluorescence intensity peaks rapidly (34-50 ms), then slowly falls to resting level in approximately 1 s. Electrically stimulated Ca Green emissions often increase in steps to a maximum value near the end of the stimulus pulse train, and slowly decline in 1-2 s. In both spontaneous and electrically stimulated flashes, measurements at multiple sites along a single comb plate show that Ca Green fluorescence rises within 17 ms (1 video field) and to a similar relative extent above resting level from base to tip of the cilia. The decline of fluorescence intensity also begins simultaneously and proceeds at similar rates along the ciliary length. Ca-free sea water reversibly abolishes spontaneous and electrically stimulated Ca Green ciliary emissions as well as reversed beating. Calculations of Ca diffusion from the ciliary base show that Ca must enter the comb plate along the entire length of the ciliary membranes. The voltage-dependent Ca channels mediating changes in beat direction are therefore distributed over the length of the comb plate cilia. The observed rapid and virtually instantaneous Ca signal throughout the intraciliary space may be necessary for reprogramming the pattern of dynein activity responsible for reorientation of the ciliary beat cycle.  相似文献   

12.
Purcell  Jennifer E. 《Hydrobiologia》1991,216(1):335-342
Predation among pelagic cnidarians and ctenophores is reviewed. The diets of semaeostome scyphomedusae and hydromedusae commonly include other gelatinous zooplanktivores. However, few species of siphonophores and ctenophores are known to consume other gelatinous species. Most of these species can be said to exhibit intraguild predation, since they consume species that potentially compete with them for food. In addition, some hydromedusan and ctenophore species may consume other gelatinous zooplanktivores exclusively. Characteristics of cnidarians and ctenophores as predators and as prey of other gelatinous species are discussed.  相似文献   

13.
14.
Matsumoto  G. I. 《Hydrobiologia》1991,(1):319-325
This study focuses on the mechanics of ciliary movement of ctenophores in relation to locomotion and feeding, with field and laboratory observations documented with 35 mm photographs and video sequences. Movement through the water is strongly modified by subtleties of body morphology. Whereas the entire ctenophore moves in a flow regime where the Reynolds numbers range from 100 to 6000, the cilia on the surface of the ctenophores move in a flow regime where the Reynolds numbers range only from 10 to 300. The water flow patterns seen by use of fluorescein dye do not match any current model of ciliary flow and assumptions for a new model are postulated. Ctenophores exhibit a wide variety of morphological adaptations that reduce drag, and a variety of behaviours that exploit fine-scale water movements for prey capture.  相似文献   

15.
Intercellular gap junctions occur between the ciliated cells that make up the comb plates of the ctenophore Pleurobrachia. Similar junctions are found within the ciliated grooves which run from the apical organ to the first plate of each comb row, as well as throughout the endoderm of the meridional canals. Gap junctions were not found in the ectodermal tissue between the comb rows. The distribution of junctions suggests that excitation conduction within the ciliated grooves, comb plates and meridional canal endoderm may be epithelial.  相似文献   

16.
Regeneration of missing body parts in model organisms provides information on the mechanisms underlying the regeneration process. The aim here is to use ctenophores to investigate regeneration of their giant ciliary swimming plates. When part of a row of comb plates on Mnemiopsis is excised, the wound closes and heals, greatly increasing the distance between comb plates near the former cut edges. Video differential interference contrast (DIC) microscopy of the regeneration of new comb plates between widely separated plates shows localized widenings of the interplate ciliated groove (ICG) first, followed by growth of two opposing groups of comb plate cilia on either side. The split parts of a new plate elongate as their bases extend laterally away from the ICG widening and continue ciliogenesis at both ends. The split parts of a new plate grow longer and move closer together into the ICG widening until they merge into a single plate that interrupts the ICG in a normal manner. Video DIC snapshots of dissected gap preparations 1.5–3‐day postoperation show that ICG widenings and/or new plates do not all appear at the same time or with uniform spacing within a gap: the lengths and distances between young plates in a gap are quite variable. Video stereo microscopy of intact animals 3–4 days after the operation show that all the new plates that will form in a gap are present, fairly evenly spaced and similar in length, but smaller and closer together than normal. Normal development of comb plates in embryos and growing animals is compared to the pattern of comb plate regeneration in adults. Comb plate regeneration differs in the cydippid Pleurobrachia that lacks ICGs and has a firmer mesoglea than Mnemiopsis. This study provides a morphological foundation for histological, cellular, and molecular analysis of ciliary regeneration in ctenophores. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
Residing in a phylum of their own, ctenophores are gelatinous zooplankton that drift through the ocean's water column. Although ctenophores are known to be parasitized by a variety of eukaryotes, no studies have examined their bacterial associates. This study describes the bacterial communities associated with the lobate ctenophore Mnemiopsis leidyi and its natural predator Beroe ovata in Tampa Bay, Florida, USA. Investigations using terminal restriction fragment length polymorphism (T-RFLP) and cloning and sequencing of 16S rRNA genes demonstrated that ctenophore bacterial communities were distinct from the surrounding water. In addition, each ctenophore genus contained a unique microbiota. Ctenophore samples contained fewer bacterial operational taxonomic units (OTUs) by T-RFLP and lower diversity communities by 16S rRNA gene sequencing than the water column. Both ctenophore genera contained sequences related to bacteria previously described in marine invertebrates, and sequences similar to a sea anemone pathogen were abundant in B.?ovata. Temporal sampling revealed that the ctenophore-associated bacterial communities varied over time, with no single OTU detected at all time points. This is the first report of distinct and dynamic bacterial communities associated with ctenophores, suggesting that these microbial consortia may play important roles in ctenophore ecology. Future work needs to elucidate the functional roles and mode of acquisition of these bacteria.  相似文献   

18.
This paper presents the first molecular phylogenetic analysis of the phylum Ctenophora, by use of 18S ribosomal RNA sequences from most of the major taxa. The ctenophores form a distinct monophyletic group that, based on this gene phylogeny, is most closely related to the cnidarians. Our results suggest that the ancestral ctenophore was tentaculate and cydippid-like and that the presently recognized order Cydippida forms a polyphyletic group. The other ctenophore orders that we studied (Lobata, Beroida, and Platyctenida) are secondarily derived from cydippid-like ancestors, a conclusion that is also supported by developmental and morphological data. The very short evolutionary distances between characterized ctenophore 18S rRNA gene sequences suggests that extant ctenophores are derived from a recent common ancestor. This has important consequences for future studies and for an understanding of the evolution of the metazoans.  相似文献   

19.
The TGF-β signaling pathway is a metazoan-specific intercellular signaling pathway known to be important in many developmental and cellular processes in a wide variety of animals. We investigated the complexity and possible functions of this pathway in a member of one of the earliest branching metazoan phyla, the ctenophore Mnemiopsis leidyi. A search of the recently sequenced Mnemiopsis genome revealed an inventory of genes encoding ligands and the rest of the components of the TGF-β superfamily signaling pathway. The Mnemiopsis genome contains nine TGF-β ligands, two TGF-β-like family members, two BMP-like family members, and five gene products that were unable to be classified with certainty. We also identified four TGF-β receptors: three Type I and a single Type II receptor. There are five genes encoding Smad proteins (Smad2, Smad4, Smad6, and two Smad1s). While we have identified many of the other components of this pathway, including Tolloid, SMURF, and Nomo, notably absent are SARA and all of the known antagonists belonging to the Chordin, Follistatin, Noggin, and CAN families. This pathway likely evolved early in metazoan evolution as nearly all components of this pathway have yet to be identified in any non-metazoan. The complement of TGF-β signaling pathway components of ctenophores is more similar to that of the sponge, Amphimedon, than to cnidarians, Trichoplax, or bilaterians. The mRNA expression patterns of key genes revealed by in situ hybridization suggests that TGF-β signaling is not involved in ctenophore early axis specification. Four ligands are expressed during gastrulation in ectodermal micromeres along all three body axes, suggesting a role in transducing earlier maternal signals. Later expression patterns and experiments with the TGF-β inhibitor SB432542 suggest roles in pharyngeal morphogenesis and comb row organization.  相似文献   

20.
During the transition from the four- to the eight-cell stage in ctenophore embryos, each blastomere produces one daughter cell with the potential to form comb plate cilia and one daughter cell that does not have this potential. If the second cleavage in a two-cell embryo is blocked, at the next cleavage these embryos frequently form four blastomeres which have the configuration of the blastomeres in a normal eight-cell embryo. At this division there is also a segregation of comb plate-forming potential. By compressing a two-cell embryo in a plane perpendicular to the first plane of cleavage it is possible to produce a four-cell blastomere configuration that is identical to that produced following the inhibition of the second cleavage. However, under these circumstances the segregation of comb plate potential does not occur. These results suggest that the appropriate plane of cleavage must take place for a given cleavage cycle, in order for localizations of developmental potential to be properly positioned within blastomeres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号