首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The reproductive function of the pistil requires the production of compounds essential for pollen tube growth. A cold-plaque screening of a pollinated pistil cDNA library of Solanum tuberosum resulted in the isolation of cDNA clone cp67. Northern blot analyses revealed that cp67 is specifically expressed in potato pistils and in a limited number of plant species. The deduced CP67 protein displays similarity to long-chain zinc-containing alcohol dehydrogenases (ADHs), although at a similarity level much lower than between other plant ADHs.  相似文献   

2.
3.
4.
Through in silico screens, we have identified many previously uncharacterized genes that display similar expression patterns as the mouse Dazl gene, a germ line-specific marker. Here, we report the identification and characterization of one of these novel genes. TSAP gene encodes a protein with 350 amino acids and contains five ankyrin repeats and a PEST sequence motif. Furthermore, we have generated an anti-TSAP antibody and have used three different approaches (RT-PCR, in situ hybridization, and immunohistochemistry) to investigate the expression profiles of TSAP mRNAs and proteins. TSAP is specifically expressed in testis, but not in other tissues such as ovary. Within the testis, TSAP is detected 10 days after birth and is mainly expressed in spermatocytes (ST) and later stage of germ cells, but not in spermatogonia (SG) or sertoli cells. Therefore, TSAP protein likely plays a role in spermatogenesis.  相似文献   

5.
BrainSpecificGene 5 (BSG5 )基因是用消减差异筛选的方法克隆到的在小鼠胚胎头部特异表达的新基因。它与人的KIAA0 6 2 8基因在氨基酸水平上有 81 9%的同源性。BSG5基因长 2 4 87bp ,定位在小鼠的第 1 5号染色体上 ,包含 2个外显子。它编码的蛋白质全长 4 99个氨基酸 ,含 1 2个C2H2型的锌指结构域。以BSG5基因全长编码区为探针的原位杂交结果显示BSG5基因在小鼠胚胎发育早期头部特异表达 ,在小鼠胚胎发育稍后时期的尾部和肢芽也有表达。此外 ,以鸡胚为模型研究BSG5基因也发现该基因在鸡胚的头部特异表达。这提示BSG5基因与头部发育有密切关系 ,其结构与表达特征预示着它编码的是一个具DNA结合功能的转录调控因子  相似文献   

6.
7.
8.
9.
10.
A M Silva  R L Bottrel  L F Reis 《Cytokine》1999,11(11):813-821
In order to identify new interferon-stimulated genes that could help in the better understanding of the mechanism of action of interferons (IFNs), we decided to compare, by differential display RT-PCR (DDRT-PCR), the pattern of gene expression between IFN-alpha treated and untreated mouse embryonic fibroblasts (MEFs). Here we describe the initial characterization of a new cDNA fragment, named FRAG-6, that is expressed only upon IFN stimulation. The IFN-induced expression of this new gene can be observed in both wild-type and IRF-1-deficient MEF. FRAG-6 cDNA hybridizes with an mRNA of 6-9 kb that is induced by IFNs in a time-dependent manner. Analysis of the cloned nucleotide sequence revealed a 174 amino acid (aa) open reading frame (ORF) contained within the 576 bp. No significant homology with known nucleotide or protein sequences was observed. FRAG-6 is induced in vitro upon treatment of wild type or IRF-1-null cells with IFN-alpha or -gamma, but not with TNF or IL-1. Treatment of mice with imiquimod, a potent inducer of IFN, led to induced expression of FRAG-6 mRNA in various organs from wild type or IRF-1-deficient mice, but not from STAT-1 or type I IFN receptor deficient animals. Our results demonstrate that FRAG-6 mRNA induction by interferons is IRF-1-independent and it is likely to be activated by the JAK/STAT pathway. Further characterization of FRAG-6 will help us in the understanding of the mechanism of action of IFNs.  相似文献   

11.
12.
A novel cDNA clone designated as HS1, which show an expression pattern limited to human hematopoietic cells, was isolated. About 2kb mRNA of the clone was accumulated in all the mature and immature lymphoid and myeloid cell lines tested, and two of three erythroblastoid cell lines, but not in any cell lines of non-hematopoietic tissues. The same mRNA was also detected in normal lymphoid and myeloid tissues and peripheral blood lymphocytes, granulocytes and macrophages, but again not in non-hematopoietic tissues. Nucleotide sequence of the HS1 predicts a protein of 486 amino acids (Mr 53,931). N-terminal half of the protein retains unique repeating motifs, each of which shows a significant homology with the helix-turn-helix DNA-binding motif of several proteins reported previously. C-terminal half of the protein retains a region conserved between non-receptor tyrosine kinases (src family), phospholipase C(PLC)-148 and the crk oncogene product. A unique feature of HS1 suggests that the protein may be involved in signal transduction and regulation of gene expression.  相似文献   

13.
14.
A novel beta1,6-N-acetylglucosaminyltransferase (beta1, 6GnT) cDNA was identified by a BLAST search using the amino acid sequence of human GnT-V as a query. The full-length sequence was determined by a combination of 5'-rapid amplification of cDNA end analysis and a further data base search. The open reading frame encodes a 792 amino acid protein with a type II membrane protein structure typical of glycosyltransferases. The entire sequence identity to human GnT-V is 42%. When pyridylaminated (PA) agalacto biantennary N-linked oligosaccharide was used as an acceptor substrate, the recombinant enzyme generated a novel product other than the expected GnT-V product, (GlcNAcbeta1,2-Manalpha1,3-)[GlcNAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1,6-]Manbeta1,4-GlcNAcbeta1,4-GlcNAc-PA. This new product was identified as [GlcNAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1,3-][Glc-NAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1,6-]Manbeta1,4-GlcNAcbeta1,4-GlcNAc-PA by mass spectrometry and 1H NMR. Namely, the new GnT (designated as GnT-IX) has beta1,6GnT activity not only to the alpha1,6-linked mannose arm but also to the alpha1,3-linked mannose arm of N-glycan, forming a unique structure that has not been reported to date. Northern blot analysis showed that the GnT-IX gene is exclusively expressed in the brain, whereas the GnT-V gene is expressed ubiquitously. These results suggest that GnT-IX is responsible for the synthesis of a unique oligosaccharide structure in the brain.  相似文献   

15.
16.
17.
18.
19.
20.

Background  

Cross-species nuclear transfer has been shown to be a potent approach to retain the genetic viability of a certain species near extinction. However, most embryos produced by cross-species nuclear transfer were compromised because that they were unable to develop to later stages. Gene expression analysis of cross-species cloned embryos will yield new insights into the regulatory mechanisms involved in cross-species nuclear transfer and embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号