首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A TGFbeta signal transduction cascade controls body size and male tail morphogenesis in the nematode Caenorhabditis elegans. We have analyzed the function of the sma-3 Smad gene, one of three Smad genes that function in this pathway. Null mutations in sma-3 are at least as severe as null mutations in the ligand and type I receptor genes, dbl-1 and sma-6, indicating that the other Smads do not function in the absence of SMA-3. Furthermore, null mutations in sma-3 do not cause defects in egg laying or in regulation of the developmentally arrested dauer larva stage, indicating no overlapping function with another C. elegans TGFbeta signaling pathway. The sma-3 gene is widely expressed at all developmental stages in hermaphrodites and males. The molecular lesions associated with eight sma-3 alleles of varying severity have been determined. The missense mutations cluster in two previously identified regions important for Smad function.  相似文献   

2.
In the nematode Caenorhabditis elegans, a TGFbeta-related signaling pathway regulates body size and male tail morphogenesis. We sought to identify genes encoding components or modifiers of this pathway in a large-scale genetic screen. Remarkably, this screen was able to identify essentially all core components of the TGFbeta signaling pathway. Among 34 Small mutants, many mutations disrupt genes encoding recognizable components of the TGFbeta pathway: DBL-1 ligand, DAF-4 type II receptor, SMA-6 type I receptor, and SMA-2, SMA-3, and SMA-4 Smads. Moreover, we find that at least 11 additional complementation groups can mutate to the Small phenotype. Four of these 11 genes, sma-9, sma-14, sma-16, and sma-20 affect male tail morphogenesis as well as body size. Two genes, sma-11 and sma-20, also influence regulation of the developmentally arrested dauer larval stage, suggesting a role in a second characterized TGFbeta pathway in C. elegans. Other genes may represent tissue-specific factors or parallel pathways for body size control. Because of the conservation of TGFbeta signaling pathways, homologs of these genes may be involved in tissue specificity and/or crosstalk of TGFbeta pathways in other animals.  相似文献   

3.
4.
In C. elegans, the Sma/Mab TGFbeta signaling pathway regulates body size and male tail patterning. SMA-9, the C. elegans homolog of Schnurri, has been shown to function as a downstream component to mediate the Sma/Mab TGFbeta signaling pathway in these processes. We have discovered a new role for SMA-9 in dorsoventral patterning of the C. elegans post-embryonic mesoderm, the M lineage. In addition to a small body size, sma-9 mutant animals exhibit a dorsal-to-ventral fate transformation within the M lineage. This M lineage defect of sma-9 mutants is unique in that animals carrying mutations in all other known components of the TGFbeta pathway exhibit no M lineage defects. Surprisingly, mutations in the core components of the Sma/Mab TGFbeta signaling pathway suppressed the M lineage defects of sma-9 mutants without suppressing their body size defects. We show that this suppression specifically happens within the M lineage. Our studies have uncovered an unexpected role of SMA-9 in antagonizing the TGFbeta signaling pathway during mesodermal patterning, suggesting a novel mode of function for the SMA-9/Schnurri family of proteins.  相似文献   

5.
6.
7.
Ji YJ  Nam S  Jin YH  Cha EJ  Lee KS  Choi KY  Song HO  Lee J  Bae SC  Ahnn J 《Developmental biology》2004,274(2):402-412
The rnt-1 gene is the only Caenorhabditis elegans homologue of the mammalian RUNX genes. Several lines of molecular biological evidence have demonstrated that the RUNX proteins interact and cooperate with Smads, which are transforming growth factor-beta (TGF-beta) signal mediators. However, the involvement of RUNX in TGF-beta signaling has not yet been supported by any genetic evidence. The Sma/Mab TGF-beta signaling pathway in C. elegans is known to regulate body length and male tail development. The rnt-1(ok351) mutants show the characteristic phenotypes observed in mutants of the Sma/Mab pathway, namely, they have a small body size and ray defects. Moreover, RNT-1 can physically interact with SMA-4 which is one of the Smads in C. elegans, and double mutant animals containing both the rnt-1(ok351) mutation and a mutation in a known Sma/Mab pathway gene displayed synergism in the aberrant phenotypes. In addition, lon-1(e185) mutants was epistatic to rnt-1(ok351) mutants in terms of long phenotype, suggesting that lon-1 is indeed downstream target of rnt-1. Our data reveal that RNT-1 functionally cooperates with the SMA-4 proteins to regulate body size and male tail development in C. elegans.  相似文献   

8.
There are several transforming growth factor-beta (TGF-beta) pathways in the nematode Caenorhabditis elegans. One of these pathways regulates body length and is composed of the ligand DBL-1, serine/threonine protein kinase receptors SMA-6 and DAF-4, and cytoplasmic signaling components SMA-2, SMA-3, and SMA-4. To further examine the molecular mechanisms of body-length regulation in the nematode by the TGF-beta pathway, we examined the regional requirement for the type-I receptor SMA-6. Using a SMA-6::GFP (green fluorescent protein) reporter gene, sma-6 was highly expressed in the hypodermis, unlike the type-II receptor DAF-4, which is reported to be ubiquitously expressed. We then examined the ability of SMA-6 expression in different regions of the C. elegans body to rescue the sma-6 phenotype (small) and found that hypodermal expression of SMA-6 is necessary and sufficient for the growth and maintenance of body length. We also demonstrate that GATA sequences in the sma-6 promoter contribute to the hypodermal expression of sma-6.  相似文献   

9.
Plexins are functional receptors for Semaphorin axon guidance cues. Previous studies have established that some Plexins directly bind RAC(GTP) and RHO. Recent work in C. elegans showed that semaphorin 1 (smp-1 and smp-2) and plexin 1 (plx-1) are required to prevent anterior displacement of the ray 1 cells in the male tail (Fujii et al., 2002; Ginzburg et al., 2002). We show genetically that plx-1 is part of the same functional pathway as smp-1 and smp-2 for male ray positioning. RAC GTPase genes mig-2 and ced-10 probably function redundantly, whereas unc-73, which encodes a GEF for both of these GTPases, is required cell autonomously for preventing anterior displacement of ray 1 cells. RNAi analysis indicates that rho-1-encoded RHO GTPase, plus let-502 and K08B12.5-encoded RHO-kinases, are also required to prevent anterior displacement of ray 1 cells, suggesting that different kinds of RHO-family GTPases act similarly in ray 1 positioning. At low doses of wild-type mig-2 and ced-10, the Semaphorin 1 proteins no longer act through PLX-1 to prevent anterior displacements of ray 1, but have the opposite effect, acting through PLX-1 to mediate anterior displacements of ray 1. These results suggest that Plexin 1 senses levels of distinct RHO and RAC GTPases. At normal levels of RHO and RAC, Semaphorin 1 proteins and PLX-1 prevent a forward displacement of ray 1 cells, whereas at low levels of cycling RAC, Semaphorin 1 proteins and PLX-1 actively mediate their anterior displacement. Endogenously and ectopically expressed SMP-1 and SMP-2 suggest that the hook, a major source of Semaphorin 1 proteins in the male tail, normally attracts PLX-1-expressing ray 1 cells.  相似文献   

10.
In C. elegans, a TGFbeta-related signaling pathway regulates body size. Loss of function of the signaling ligand (dbl-1), receptors (daf-4 and sma-6) or Smads (sma-2, sma-3 and sma-4) results in viable, but smaller animals because of a reduction in postembryonic growth. We have investigated the tissue specificity of this pathway in body size regulation. We show that different tissues are reduced in size by different proportions, with hypodermal blast cell size most closely proportional to body size. We show that SMA-3 Smad is expressed in pharynx, intestine and hypodermis, as has been previously reported for the type I receptor SMA-6. Furthermore, we find that SMA-3::GFP is nuclear localized in all of these tissues, and that nuclear localization is enhanced by SMA-6 activity. Interestingly, SMA-3 protein accumulation was found to be negatively regulated by the level of Sma/Mab pathway activity. Using genetic mosaic analysis and directed expression of SMA-3, we find that SMA-3 activity in the hypodermis is necessary and sufficient for normal body size. As dbl-1 is expressed primarily in the nervous system, these results suggest a model in which postembryonic growth of hypodermal cells is regulated by TGFbeta-related signaling from the nervous system to the hypodermis.  相似文献   

11.
The semaphorin family comprises secreted and transmembrane proteins involved in axon guidance and cell migration. We have isolated and characterized deletion mutants of C. elegans semaphorin 1a (Ce-sema-1a or smp-1) and semaphorin 1b (Ce-sema-1b or smp-2) genes. Both mutants exhibit defects in epidermal functions. For example, the R1.a-derived ray precursor cells frequently fail to change anterior/posterior positions completely relative to their sister tail lateral epidermal precursor cell R1.p, causing ray 1 to be formed anterior to its normal position next to ray 2. The ray cells, which normally separate from the lateral tail seam cell (SET) at the end of L4 stage, remains connected to the SET cell even in adult mutant males. The ray 1 defects are partially penetrant in each single Ce-sema-1 mutant at 20 degrees C, but are greatly enhanced in Ce-sema-1 double mutants, suggesting that Ce-Sema-1a and Ce-Sema-1b function in parallel to regulate ray 1 position. Both mutants also have defects in other aspects of epidermal functions, including head and tail epidermal morphogenesis and touch cell axon migration, whereas, smp-1 mutants alone have defects in defecation and brood size. A feature of smp-1 mutants that is shared with mutants of mab-20 (which encodes Sema-2a) is the abnormal perdurance of contacts between epidermal cells.  相似文献   

12.
We have analyzed the sma-5(n678) mutant in C. elegans to elucidate mechanisms controlling body size. The sma-5 mutant is very small, grows slowly and its intestinal granules look abnormal. We found a 15 kb deletion in the mutant that includes a 226 bp deletion of the 3' end of the W06B3.2-coding sequence. Based on this result, rescue experiments, RNAi experiments and a newly isolated deletion mutant of W06B3.2, we conclude that W06B3.2 is the sma-5 gene. The sma-5 mutant has much smaller intestine, body wall muscles and hypodermis than those of the wild type. However, the number of intestinal cells or body wall muscle cells is not changed, indicating that the sma-5 mutant has much smaller cells. In relation to the smaller cell size, the amount of total protein is drastically decreased; however, the DNA content of the intestinal nuclei is unchanged in the sma-5 mutant. The sma-5 gene is expressed in intestine, excretory cell and hypodermis, and encodes homologs of a mammalian MAP kinase BMK1/ERK5/MAPK7, which was reported to control cell cycle and cell proliferation. Expression of the sma-5 gene in hypodermis is important for body size control, and it can function both organ-autonomously and non-autonomously. We propose that the sma-5 gene functions in a MAP kinase pathway to regulate body size mainly through control of cell growth.  相似文献   

13.
To gain an understanding of the genes and mechanisms that govern morphogenesis and its evolution, we have analyzed mutations that disrupt this process in a simple model structure, the male tail tip of the rhabditid nematode C. elegans. During the evolution of rhabditid male tails, there have been several independent changes from tails with rounded tips ("peloderan", as in C. elegans) to those with pointed tips ("leptoderan"). Mutations which produce leptoderan (Lep) tails in C. elegans thus identify candidate genes and pathways in which evolutionary changes could have produced leptoderan tails from peloderan ancestors. Here we report that two novel, gain-of-function (gf) alleles of lin-41 have lesions predicted to affect the N-terminus of the RBCC-domain LIN-41 protein. Both gf alleles cause the tail tip of adult males to retain the pointed shape of the juvenile tails, producing a Lep phenotype that looks like the tails of leptoderan species. Consistent with its role in the heterochronic pathway, we find that lin-41 governs the timing and extent of male tail tip morphogenesis in a dose-dependent manner. Specifically, the Lep phenotype results from a heterochronic delay in the retraction and fusion of the tail tip cells during L4 morphogenesis, such that retraction is not completed before the adult molt. Conversely, we find that tail tip morphogenesis and cell fusions begin precociously at the L3 stage in the reduced-function lin-41 mutant, ma104, resulting in over-retracted male tails in the adult. Because modulated anti-LIN-41 RNAi knockdowns in the gf mutants restore wild-type phenotype, we suggest that the leptoderan phenotype of the gf alleles is due to a higher activity of otherwise normal LIN-41. Additionally, the gf allele is suppressed by the wild-type allele, suggesting that LIN-41 normally regulates itself, possibly by autoubiquitination. We speculate that small changes affecting LIN-41 could have been significant for male tail evolution.  相似文献   

14.
15.
Raharjo WH  Ghai V  Dineen A  Bastiani M  Gaudet J 《Genetics》2011,189(3):885-897
The acquisition and maintenance of shape is critical for the normal function of most cells. Here we investigate the morphology of the pharyngeal glands of Caenorhabditis elegans. These unicellular glands have long cellular processes that extend discrete lengths through the pharyngeal musculature and terminate at ducts connected to the pharyngeal lumen. From a genetic screen we identified several mutants that affect pharyngeal gland morphology. The most severe such mutant is an allele of sma-1, which encodes a β-spectrin required for embryonic elongation, including elongation of the pharynx. In sma-1 mutants, gland projections form normally but become increasingly abnormal over time, acquiring additional branches, outgrowths, and swelling, suggestive of hypertrophy. Rather than acting in pharyngeal glands, sma-1 functions in the surrounding musculature, suggesting that pharyngeal muscles play a critical role in maintenance of gland morphology by restricting their growth, and analysis of other mutants known to affect pharyngeal muscles supports this hypothesis. We suggest that gland morphology is maintained by a balance of forces from the muscles and the glands.  相似文献   

16.
Ca(2+)/calmodulin-dependent calcineurin has been shown to have important roles in various Ca(2+) signaling pathways. We have previously reported that cnb-1(jh103) mutants, null mutants of a regulatory B subunit, displayed pleiotropic defects including uncoordinated movement and delayed egg laying in Caenorhabditis elegans. Interestingly, gain-of-function mutants of a catalytic A subunit showed exactly opposite phenotypes to those of cnb-1(null) mutants providing an excellent genetic model to define calcium-mediated signaling pathway at the organism level. Furthermore, calcineurin is also important for normal cuticle formation, which is required for maintenance of normal body size in C.elegans. Genetic interactions between tax-6 and several mutants including egl-30 and egl-10, which are known to be involved in G-protein signaling pathways suggest that calcineurin indeed regulates locomotion and serotonin-mediated egg laying through goa-1(Goalpha) and egl-30(Gqalpha). Our results indicate that, along with CaMKII, calcineurin regulates G-protein-coupled phosphorylation signaling pathways in C.elegans.  相似文献   

17.
To identify genes controlling volatile anesthetic (VA) action, we have screened through existing Caenorhabditis elegans mutants and found that strains with a reduction in Go signaling are VA resistant. Loss-of-function mutants of the gene goa-1, which codes for the alpha-subunit of Go, have EC(50)s for the VA isoflurane of 1.7- to 2.4-fold that of wild type. Strains overexpressing egl-10, which codes for an RGS protein negatively regulating goa-1, are also isoflurane resistant. However, sensitivity to halothane, a structurally distinct VA, is differentially affected by Go pathway mutants. The RGS overexpressing strains, a goa-1 missense mutant found to carry a novel mutation near the GTP-binding domain, and eat-16(rf) mutants, which suppress goa-1(gf) mutations, are all halothane resistant; goa-1(null) mutants have wild-type sensitivities. Double mutant strains carrying mutations in both goa-1 and unc-64, which codes for a neuronal syntaxin previously found to regulate VA sensitivity, show that the syntaxin mutant phenotypes depend in part on goa-1 expression. Pharmacological assays using the cholinesterase inhibitor aldicarb suggest that VAs and GOA-1 similarly downregulate cholinergic neurotransmitter release in C. elegans. Thus, the mechanism of action of VAs in C. elegans is regulated by Goalpha, and presynaptic Goalpha-effectors are candidate VA molecular targets.  相似文献   

18.
Ephrins and semaphorins regulate a wide variety of developmental processes, including axon guidance and cell migration. We have studied the roles of the ephrin EFN-4 and the semaphorin MAB-20 in patterning cell-cell contacts among the cells that give rise to the ray sensory organs of Caenorhabditis elegans. In wild-type, contacts at adherens junctions form only between cells belonging to the same ray. In efn-4 and mab-20 mutants, ectopic contacts form between cells belonging to different rays. Ectopic contacts also occur in mutants in regulatory genes that specify ray morphological identity. We used efn-4 and mab-20 reporters to investigate whether these ray identity genes function through activating expression of efn-4 or mab-20 in ray cells. mab-20 reporter expression in ray cells was unaffected by mutants in the Pax6 homolog mab-18 and the Hox genes egl-5 and mab-5, suggesting that these genes do not regulate mab-20 expression. We find that mab-18 is necessary for activating efn-4 reporter expression, but this activity alone is not sufficient to account for mab-18 function in controlling cell-cell contact formation. In egl-5 mutants, efn-4 reporter expression in certain ray cells was increased, inconsistent with a simple repulsion model for efn-4 action. The evidence indicates that ray identity genes primarily regulate ray morphogenesis by pathways other than through regulation of expression of semaphorin and ephrin.  相似文献   

19.
The C. elegans male tail is being studied as a model to understand how genes specify the form of multicellular animals. Morphogenesis of the specialized male copulatory organ takes place in the last larval stages during male development. Genetic analysis is facilitated because the structure is not necessary for male viability or for strain propagation. Analysis of developmental mutants, isolated in several functional and morphological screens, has begun to reveal how fates of cells are determined in the cell lineages, and how the specification of cell fates affects the morphology of the structure. Cytological studies in wild type and in mutants have been used to study the mechanism of pattern formation in the tail peripheral nervous system. The ultimate goal is to define the entire pathway leading to the male copulatory organ.  相似文献   

20.
Intersectins (Itsn) are conserved EH and SH3 domain containing adaptor proteins. In Drosophila melanogaster, ITSN is required to regulate synaptic morphology, to facilitate efficient synaptic vesicle recycling and for viability. Here, we report our genetic analysis of Caenorhabditis elegans intersectin. In contrast to Drosophila , C. elegans itsn-1 protein null mutants are viable and display grossly normal locomotion and development. However, motor neurons in these mutants show a dramatic increase in large irregular vesicles and accumulate membrane-associated vesicles at putative endocytic hotspots, approximately 300 nm from the presynaptic density. This defect occurs precisely where endogenous ITSN-1 protein localizes in wild-type animals and is associated with a significant reduction in synaptic vesicle number and reduced frequency of endogenous synaptic events at neuromuscular junctions (NMJs). ITSN-1 forms a stable complex with EHS-1 (Eps15) and is expressed at reduced levels in ehs-1 mutants. Thus, ITSN-1 together with EHS-1, coordinate vesicle recycling at C. elegans NMJs. We also found that both itsn-1 and ehs-1 mutants show poor viability and growth in a Disabled (dab-1) null mutant background. These results show for the first time that intersectin and Eps15 proteins function in the same genetic pathway, and appear to function synergistically with the clathrin-coat-associated sorting protein, Disabled, for viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号