首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Endangered species worldwide exist in remnant populations, often within fragmented landscapes. Although assessment of genetic diversity in fragmented habitats is very important for conservation purposes, it is usually impossible to evaluate the amount of diversity that has actually been lost. Here, we compared population structure and levels of genetic diversity within populations of spotted suslik Spermophilus suslicus, inhabiting two different parts of the species range characterized by different levels of habitat connectivity. We used microsatellites to analyze 10 critically endangered populations located at the western part of the range, where suslik habitat have been severely devastated due to agriculture industrialization. Their genetic composition was compared with four populations from the eastern part of the range where the species still occupies habitat with reasonable levels of connectivity. In the western region, we detected extreme population structure (F ST = 0.20) and levels of genetic diversity (Allelic richness ranged from 1.45 to 3.07) characteristic for highly endangered populations. Alternatively, in the eastern region we found significantly higher allelic richness (from 5.09 to 5.81) and insignificant population structure (F ST = 0.03). As we identified a strong correlation between genetic and geographic distance and a lack of private alleles in the western region, we conclude that extreme population structure and lower genetic diversity is due to recent habitat loss. Results from this study provide guidelines for conservation and management of this highly endangered species.  相似文献   

2.
Island populations and populations established by reintroductions are prone to extinction, in part because they are vulnerable to deterministic and stochastic phenomena associated with geographic isolation and small population size. As population size declines, reduced genetic diversity can result in decreased fitness and reduced adaptive potential, which may hinder short- or long-term population viability. We used 32 microsatellite markers to investigate the conservation genetics of a newly established population of Evermann’s Rock Ptarmigan (Lagopus muta evermanni) at Agattu Island, in the western Aleutian Archipelago, Alaska. We found low genetic diversity (observed heterozygosity = 0.41, allelic richness = 2.2) and a small effective population size (N e  = 28.6), but a relatively large N e /N ratio = 0.55, which was attributed to multiple paternity in 80% of the broods and low reproductive skew among males (λ = 0.29). Moreover, successful breeding pairs were less related to each other than random male–female pairs. For conservation efforts based on reintroductions, a mating system with high rates of multiple paternity may facilitate retention of genetic diversity, thereby reducing the potential for inbreeding in small or isolated populations. Our results underscore the importance of quantifying genetic diversity and understanding the breeding behavior of translocated populations.  相似文献   

3.
The greater horseshoe bat (Rhinolophus ferrumequinum) is among the most widespread bat species in Europe but it has experienced severe declines, especially in Northern Europe. This species is listed Near Threatened in the European IUCN Red List of Threatened Animals, and it is considered to be highly sensitive to human activities and particularly to habitat fragmentation. Therefore, understanding the population boundaries and demographic history of populations of this species is of primary importance to assess relevant conservation strategies. In this study, we used 17 microsatellite markers to assess the genetic diversity, the genetic structure, and the demographic history of R. ferrumequinum colonies in the western part of its distribution. We identified one large population showing high levels of genetic diversity and large population size. Lower estimates were found in England and northern France. Analyses of clustering and isolation by distance suggested that the Channel and the Mediterranean seas could impede R. ferrumequinum gene flow. These results provide important information to improve the delineation of R. ferrumequinum management units. We suggest that a large management unit corresponding to the population ranging from Spanish Basque Country to northern France must be considered. Particular attention should be given to mating territories as they seem to play a key role in maintaining high levels of genetic mixing between colonies. Smaller management units corresponding to English and northern France colonies must also be implemented. These insular or peripheral colonies could be at higher risk of extinction in the near future.  相似文献   

4.
Styela clava, a solitary ascidian native to the NW Pacific, has become a conspicuous member of fouling communities in NW European waters. As its natural dispersal appears to be limited, the wide distribution of S. clava along coasts within its introduced range may be attributed to secondary spread assisted by human activities. Here, we used six microsatellite loci to examine the genetic diversity and extent of gene flow among S. clava populations in its European introduced range. Samples were collected from 21 populations within Europe (N = 808), 4 populations within the USA and two populations within the native range (Japan). Large variation in genetic diversity was observed among the European populations but were not explained either by the geographic distance from the first introduction area (i.e. Plymouth, UK) nor by the time elapsed since the introduction. No founder effect was observed in the introduced populations, except possibly in Puget Sound (USA). At least two different introductions occurred in Europe, identified as distinct genetic clusters: northern Danish populations (resembling one Japanese population), and the rest of Europe; a sample from Shoreham (England) possibly represents a third introduction. In North America, the population from the Atlantic was genetically similar to the majority of European populations, suggesting a European origin for populations on this seaboard, while populations from the Pacific coast were genetically similar to the same Japanese population as the Danish populations.  相似文献   

5.
The Daubenton’s bat is widespread and common in the UK and countries bordering the English Channel and North Sea. European bat lyssavirus 2 (EBLV-2), a rabies virus, has been detected in Daubenton’s bats in the UK and continental Europe. Investigating the relatedness of colonies and gene flow between these regions would allow regional estimates of the movement of Daubenton’s bats and thus the potential for disease transmission. The genetic structure of the Daubenton’s bat in western Europe was investigated by analysing variability at eight microsatellite loci. Genetic diversity was found to be high at all sites (H E = 0.73–0.84), with little differentiation between bats sampled in the UK and continental Europe. Mantel tests indicated a significant correlation between geographic distance and pair-wise F ST (P = 0.000), between colonies sampled in Scotland and northern England. However, this was not continuous throughout the sampled range, with evidence of panmixia within the area sampled in continental Europe. Assignment tests show no evidence that the (potential) EBLV-2 sero-positive and virus positive bats were more likely to have originated from the continental rather than UK populations. There is no sufficient significant genetic differentiation amongst most UK and continental colonies to conclude that EBLV-2 is maintained in the UK by immigration. Results show that it is likely to be maintained at a low endemic level within the UK. The relative genetic uniformity of UK and continental populations implies that there is no migration barrier to EBLV-2, between these regions.  相似文献   

6.
To offset declines in commercial landings of the softshell clam, Mya arenaria, resource managers are engaged in extensive stocking of seed clams throughout its range in the northwest Atlantic. Because a mixture of native and introduced stocks can disrupt locally adapted genotypes, we investigated genetic structure in M. arenaria populations across its current distribution to test for patterns of regional differentiation. We sequenced mitochondrial cytochrome oxidase I for a total of 212 individuals from 12 sites in the northwest Atlantic (NW Atlantic), as well as two introduced sites, the northeast Pacific (NE Pacific), and the North Sea Europe (NS Europe). Populations exhibited extremely low genetic variation, with one haplotype dominating (65–100%) at all sites sampled. Despite being introduced in the last 150–400 years, both NE Pacific and NS Europe populations had higher diversity measures than those in the NW Atlantic and both contained private haplotypes at frequencies of 10–27% consistent with their geographic isolation. While significant genetic structure (F ST = 0.159, P < 0.001) was observed between NW Atlantic and NS Europe, there was no evidence for genetic structure across the pronounced environmental clines of the NW Atlantic. Reduced genetic diversity in mtDNA combined with previous studies reporting reduced genetic diversity in nuclear markers strongly suggests a recent population expansion in the NW Atlantic, a pattern that may result from the retreat of ice sheets during Pleistocene glacial periods. Lack of genetic diversity and regional genetic differentiation suggests that present management strategies for the commercially important softshell clam are unlikely to have a significant impact on the regional distribution of genetic variation, although the possibility of disrupting locally adapted stocks cannot be excluded.  相似文献   

7.
Although the adder (Vipera berus) has a large distribution area, this species is particularly threatened in Western Europe due to high habitat fragmentation and human persecution. We developed 13 new microsatellite markers in order to evaluate population structure and genetic diversity in the Swiss and French Jura Mountains, where the species is limited to only a few scattered populations. We found that V. berus exhibits a considerable genetic differentiation among populations (global FST = 0.269), even if these are not geographically isolated. Moreover, the genetic diversity within populations in the Jura Mountains and in the less perturbed Swiss Alps is significantly lower than in other French populations, possibly due to post-glacial recolonisation processes. Finally, in order to minimize losses of genetic diversities within isolated populations, suggestions for the conservation of this species in fragmented habitats are proposed.  相似文献   

8.
Genetic diversity and population structure of 113 chicken populations from Africa, Asia and Europe were studied using 29 microsatellite markers. Among these, three populations of wild chickens and nine commercial purebreds were used as reference populations for comparison. Compared to commercial lines and chickens sampled from the European region, high mean numbers of alleles and a high degree of heterozygosity were found in Asian and African chickens as well as in Red Junglefowl. Population differentiation (FST) was higher among European breeds and commercial lines than among African, Asian and Red Junglefowl populations. Neighbour‐Net genetic clustering and structure analysis revealed two main groups of Asian and north‐west European breeds, whereas African populations overlap with other breeds from Eastern Europe and the Mediterranean region. Broilers and brown egg layers were situated between the Asian and north‐west European clusters. structure analysis confirmed a lower degree of population stratification in African and Asian chickens than in European breeds. High genetic differentiation and low genetic contributions to global diversity have been observed for single European breeds. Populations with low genetic variability have also shown a low genetic contribution to a core set of diversity in attaining maximum genetic variation present from the total populations. This may indicate that conservation measures in Europe should pay special attention to preserving as many single chicken breeds as possible to maintain maximum genetic diversity given that higher genetic variations come from differentiation between breeds.  相似文献   

9.
10.
In a conservation and sustainable management perspective, we identify the ecological, climatic, and demographic factors responsible for the genetic diversity patterns of the European silver fir (Abies alba Mill.) at its southwestern range margin (Pyrenees Mountains, France, Europe). We sampled 45 populations throughout the French Pyrenees and eight neighboring reference populations in the Massif Central, Alps, and Corsica. We genotyped 1,620 individuals at three chloroplast and ten nuclear microsatellite loci. We analyzed within‐ and among‐population genetic diversity using phylogeographic reconstructions, tests of isolation‐by‐distance, Bayesian population structure inference, modeling of demographic scenarios, and regression analyses of genetic variables with current and past environmental variables. Genetic diversity decreased from east to west suggesting isolation‐by‐distance from the Alps to the Pyrenees and from the Eastern to the Western Pyrenees. We identified two Pyrenean lineages that diverged from a third Alpine–Corsica–Massif Central lineage 0.8 to 1.1 M years ago and subsequently formed a secondary contact zone in the Central Pyrenees. Population sizes underwent contrasted changes, with a contraction in the west and an expansion in the east. Glacial climate affected the genetic composition of the populations, with the western genetic cluster only observed in locations corresponding to the coldest past climate and highest elevations. The eastern cluster was observed over a larger range of temperatures and elevations. All demographic events shaping the current spatial structure of genetic diversity took place during the Mid‐Pleistocene Transition, long before the onset of the Holocene. The Western Pyrenees lineage may require additional conservation efforts, whereas the eastern lineage is well protected in in situ gene conservation units. Due to past climate oscillations and the likely emergence of independent refugia, east–west oriented mountain ranges may be important reservoir of genetic diversity in a context of past and ongoing climate change in Europe.  相似文献   

11.
Populations of the European Spadefoot toad (Pelobates fuscus) have experienced recent declines all over Europe, but these appear to be more intense in north and western Europe. Due to the toad’s fossorial nature and specific habitat requirements, environmental conditions have played a major role in structuring current populations. We examined the phylogeographic structure in P. fuscus from 16 localities throughout Europe using mitochondrial cytochrome b gene sequence analysis. Sequence divergence among haplotypes was low (0.54±0.15%). Three very closely related haplotypes occupy northern and western parts of Europe whereas 12 others were observed among samples from south-eastern Europe, including the Balkans. Our results suggest that toads only recently colonized the northern and western parts of Europe following glacial retreat. This expansion probably took place in steppic-like areas during the younger Dryas cold interval, about 12,900–11,500 years ago. Restricted gene flow with an isolation-by-distance population structure characterises a major part of its distribution range. Based on our results we suggest that the northern and western lineages should be considered as distinct conservation units, while the south-eastern populations from the refugial areas, where nearly all genetic polymorphism occurs and populations appear less vulnerable, should receive special attention.  相似文献   

12.
The phylogeographic structure of vairone (Telestes muticellus), a primary freshwater fish endangered in a large part of its distributional range, was assessed: (i) to reconstruct the complex dispersion pattern in the upper Tyrrhenian hydrographic basins of Ligury, actually not recognised as peri-Mediterranean ichthyogeographic district, and (ii) to evidence the shape of population genetic structure as useful tool for future conservation strategies. A partial fragment of mitochondrial DNA cytochrome b (497 bp) was sequenced in 109 specimens sampled from eight populations, along an east–west geographic gradient. Fourteen haplotypes were identified, confirming the evolutionary distance between the two co-generic species: T. muticellus as ‘Ligurian’ clade and T. souffia as ‘French’ clade. The Nested Clade Analysis (NCA), the population genetic variability and population structure suggested a natural colonization occurred throughout the crossing of Alpine and Apennine watershed. The hierarchical Analysis of Molecular Variance (AMOVA) confirmed a geographic distinction between the populations from western (WTL) and from eastern (ETL) Tyrrhenian basins of Ligury colonised through the river capture processes along the Maritime Alpine watershed (Padano-Venetian district) and along the Apennine watershed (Tuscano-Latium district), respectively. Our results, evidencing the lack of genetic contiguity among vairone populations of the upper Tyrrhenian hydrographic basins of Ligury, allowed to recognise the presence of two management units (MUs) for its conservation. Handling editor: Christian Sturmbauer  相似文献   

13.
The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species’ distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation (HE: 0.04–0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long‐distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates (FIS = 0.155–0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among‐population differentiation highlight the conservation value of large populations throughout the species’ range, particularly in light of climate change and direct human threats.  相似文献   

14.
Due to societal changes and altered demands for firewood, the traditional forest management of coppicing has been largely abandoned. As a result, many forest herbs that are specifically adapted to regular opening of the canopy, have suffered significant declines in abundance, and the remaining populations of these species often tend to be small and isolated. Reduced population sizes and pronounced spatial isolation may cause loss of within-population genetic diversity and increased between-population differentiation through random genetic drift and inbreeding. In this study, we investigated genetic diversity and genetic structure of 15 populations of the food-deceptive orchid Orchis mascula using AFLP markers. Within-population genetic diversity significantly increased with increasing population size, indicating genetic impoverishment in small populations. Genetic differentiation, on the other hand, was rather low (ΦST = 0.083) and there was no significant relationship between genetic and geographic distances, suggesting substantial gene flow within the study area. However, strong differences in levels of within-population diversity and among-population differentiation were found for populations located in forests that have been regularly coppiced and populations found in forests that were neglected for more than 50 years and that were totally overgrown by shrubs. Our data thus indicate that a lack of coppicing leads to decreased genetic diversity and increased differentiation in this orchid species, most likely as a result of genetic drift following demographic bottlenecks. From a conservation point of view, this study combined with previous results on the demography of O. mascula in relation to forest management illustrates the importance of coppicing in maintaining viable populations of forest herbs in the long-term.  相似文献   

15.
《Mammalian Biology》2014,79(4):240-246
The Common hamster (Cricetus cricetus) faced massive population declines throughout its western range margin. In France, relict populations remained in the Alsace region. By comparing allelic diversity using microsatellite analysis over a time span of 12 years we investigated if this population decline led to genetic erosion in a French relict population of the species. Genetic diversity was moderate but comparable to other populations from Western Europe. Interestingly, no decline of allelic variation was revealed between 1999 and 2012 in the study region (expected heterozygosity = 0.51 in 1999 and 0.5 in 2012, respectively), suggesting a sufficiently high effective population size of ∼500 (179–956 SD). While several alleles were lost in a captive breed maintained for restocking purposes in the region, expected heterozygosity was comparably high (=0.5). Our results show that genetic diversity has been effectively maintained in a relict population of French Common hamsters despite of massive range loss. We recommend the maintenance of intense in situ conservation effort, along with regular monitoring of genetic diversity and effective population size.  相似文献   

16.
The use of in vitro techniques for conservation has been rising steadily since their inclusion in The Convention on Biological Diversity and The Global Strategy for Plant Conservation. Unfortunately, bryophytes are often overlooked in conservation initiatives, but they are important in a number of large-scale ecosystem processes, i.e. nutrient, water and carbon cycling. There is a long history of the use of tissue culture in cultivating bryophytes, and many species respond well to in vitro techniques. For 6 yr (2000–2006), The Royal Botanic Gardens, Kew and the UK statutory conservation agencies supported a project for the ex situ conservation of bryophytes. Living and cryopreserved collections of UK threatened species were successfully established and the cryopreserved collection continues to be maintained. Other in vitro conservation collections are maintained over Europe, at botanic gardens, museums and by individual university researchers, but there is no coherent European collection of bryophytes for conservation, or standardisation of techniques. A major issue for many in vitro collections is the maintenance of within species genetic diversity. Such diversity is considered to be important, as it is the basis by which populations of species can adapt to new conditions and evolve. We are proposing to establish a European network for in vitro conservation of bryophytes. We envisage that this will include living collections, cryopreserved collections and spore collections. Conservation of genetic diversity would be a priority and the collections would provide a valuable resource for conservation initiatives and support research into rare and threatened species.  相似文献   

17.
Biologic invasions can have important ecological, economic and social consequences, particularly when they involve the introduction and spread of plant invasive pathogens, as they can threaten natural ecosystems and jeopardize the production of human food. Examples include the grapevine downy mildew, caused by the oomycete Plasmopara viticola, an invasive species native to North America, introduced into Europe in the 1870s. We investigated the introduction and spread of this invasive pathogen, by analysing its genetic structure and diversity in a large sample from European vineyards. Populations of P. viticola across Europe displayed little genetic diversity, consistent with the occurrence of a bottleneck at the time of introduction. Bayesian coalescent analyses revealed a clear population expansion signal in the genetic data. We detected a weak, but significant, continental‐wide population structure, with two geographically and genetically distinct clusters in Western and Eastern European vineyards. Approximate Bayesian computation, analyses of clines of genetic diversity and of isolation‐by‐distance patterns provided evidence for a wave of colonization moving in an easterly direction across Europe. This is consistent with historical reports, first mentioning the introduction of the disease in Bordeaux vineyards (France) and sub‐sequently documenting its rapid spread across Europe. This initial introduction in the west was probably followed by a ‘leap‐frog’ event into Eastern Europe, leading to the formation of the two genetic clusters we detected. This study shows that recent population genetics methods within the Bayesian and coalescence frameworks are extremely powerful for increasing our understanding of pathogen population dynamics and invasion histories.  相似文献   

18.
In species of great conservation concern, special attention must be paid to their phylogeography, in particular the origin of animals for captive breeding and reintroduction. The endangered European mink lives now in at least three well-separated populations in northeast, southeast and west Europe. Our aim is to assess the genetic structure of these populations to identify 'distinct population segments' (DPS) and advise captive breeding programmes. First, the mtDNA control region was completely sequenced in 176 minks and 10 polecats. The analysis revealed that the western population is characterized by a single mtDNA haplotype that is closely related to those in eastern regions but nevertheless, not found there to date. The northeast European animals are much more variable (pi = 0.012, h = 0.939), with the southeast samples intermediate (pi = 0.0012, h = 0.469). Second, 155 European mink were genotyped using six microsatellites. The latter display the same trends of genetic diversity among regions as mtDNA [gene diversity and allelic richness highest in northeast Europe (H(E) = 0.539, R(S) = 3.76), lowest in west Europe (H(E) = 0.379, R(S) = 2.12)], and provide evidences that the southeast and possibly the west populations have undergone a recent bottleneck. Our results indicate that the western population derives from a few animals which recently colonized this region, possibly after a human introduction. Microsatellite data also reveal that isolation by distance occurs in the western population, causing some inbreeding because related individuals mate. As genetic data indicate that the three populations have not undergone independent evolutionary histories for long (no phylogeographical structure), they should not be considered as distinct DPS. In conclusion, the captive breeding programme should use animals from different parts of the species' present distribution area.  相似文献   

19.
Understanding the amount and distribution of genetic diversity in natural populations can inform the conservation strategy for the species in question. In this study, genetic variation at eight nuclear microsatellite loci was used to investigate genetic diversity and population structure of wild litchi (Litchi chinensis Sonn. subsp. chinensis). Totally 215 individuals were sampled, representing nine populations of wild litchi. All eight loci were polymorphic, with a total of 51 alleles. The expected heterozygosity in the nine populations ranged from 0.367 to 0.638 with an average value of 0.526. Inbreeding within wild litchi populations was indicated by a strong heterozygote defect. Significant bottleneck events were detected in the populations from Yunnan and Vietnam, which could be responsible for lower levels of genetic diversity in these populations. Measures of genetic differentiation (F ST = 0.269) indicated strong differentiation among wild litchi populations. Significant correlation was found between genetic differentiation and geographical distance (r = 0.655, P = 0.002), indicating a strong isolation by distance in these populations. Bayesian clustering suggested genetic separation among three regional groups, namely, the western group, the central group and the eastern group. Some conservation strategies for wild litchi populations were also proposed based on our results.  相似文献   

20.
Andrena hattorfiana is a rare solitary bee which has declined during the last decades throughout western Europe. It is specialised to forage pollen from plants of the family Dipsacaceae. Knowledge of distribution, dispersal propensity, and local population sizes is essential for successful conservation of A. hattorfiana. The investigated local bee populations (n = 78) were dominated by small local populations and 60% were smaller than 10 female individuals and 80% were smaller than 50 female individuals. The area of the median occupied habitat patch was 1.25 hectare and harboured 7 female bees. Mark-release-recapture studies of female A. hattorfiana revealed a sedentary behaviour. Among pollen-foraging female bees the average registered distance moved was 46 m. The patch emigration rate was about 2%, with an observed maximum colonization distance of 900 m. Only 10% of the individuals crossed areas without the pollen plant within grassland patches, such as unpaved roads, stone walls and small tree-stands, even if these areas were less than 10 m wide. This study shows that solitary bees can occur in local populations of extremely small size and they have a sedentary behaviour. These are features that usually increase the risk of local population extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号