首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mechanism of Isotonic Water Transport   总被引:15,自引:4,他引:11       下载免费PDF全文
The mechanism by which active solute transport causes water transport in isotonic proportions across epithelial membranes has been investigated. The principle of the experiments was to measure the osmolarity of the transported fluid when the osmolarity of the bathing solution was varied over an eightfold range by varying the NaCl concentration or by adding impermeant non-electrolytes. An in vitro preparation of rabbit gall bladder was suspended in moist oxygen without an outer bathing solution, and the pure transported fluid was collected as it dripped off the serosal surface. Under all conditions the transported fluid was found to approximate an NaCl solution isotonic to whatever bathing solution used. This finding means that the mechanism of isotonic water transport in the gall bladder is neither the double membrane effect nor co-diffusion but rather local osmosis. In other words, active NaCl transport maintains a locally high concentration of solute in some restricted space in the vicinity of the cell membrane, and water follows NaCl in response to this local osmotic gradient. An equation has been derived enabling one to calculate whether the passive water permeability of an organ is high enough to account for complete osmotic equilibration of actively transported solute. By application of this equation, water transport associated with active NaCl transport in the gall bladder cannot go through the channels for water flow under passive conditions, since these channels are grossly too impermeable. Furthermore, solute-linked water transport fails to produce the streaming potentials expected for water flow through these passive channels. Hence solute-linked water transport does not occur in the passive channels but instead involves special structures in the cell membrane, which remain to be identified.  相似文献   

2.
The Ultrastructural Route of Fluid Transport in Rabbit Gall Bladder   总被引:18,自引:5,他引:13  
The route of fluid transport across the wall of the rabbit gall bladder has been examined by combined physiological and morphological techniques. Fluid transport was either made maximal or was inhibited by one of six physiological methods (metabolic inhibition with cyanide-iodoacetate, addition of ouabain, application of adverse osmotic gradients, low temperature, replacement of Cl by SO4, or replacement of NaCl by sucrose). Then the organ was rapidly fixed and subsequently embedded, sectioned, and examined by light and electron microscopy. The structure of the gall bladder is presented with the aid of electron micrographs, and changes in structure are described and quantitated. The most significant morphological feature seems to be long, narrow, complex channels between adjacent epithelial cells; these spaces are closed by tight junctions at the luminal surface of the epithelium but are open at the basal surface. They are dilated when maximal fluid transport occurs, but are collapsed under all the conditions which inhibit transport. Additional observations and experiments make it possible to conclude that this dilation is the result of fluid transport through the spaces. Evidently NaCl is constantly pumped from the epithelial cells into the spaces, making them hypertonic, so that water follows osmotically. It is suggested that these spaces may represent a "standing-gradient flow system," in which osmotic equilibration takes place progressively along the length of a long channel.  相似文献   

3.
A volumetric method has been developed which permits continuous registration of volume flows across epithelial tissues. The method was applied to volume flow measurements across rabbit gall bladder epithelium. The rate of fluid reabsorption measured in this way was twice as high as previously observed in sac preparations of the gall bladder. This is probably due to better aeration and stirring of the mucosal solution. It was demonstrated that electrical gradients across the gall bladder induced volume flows towards the negative electrode. In non-transporting bladders volume flows were linearly related with current between 300 and 900 μA in both directions. However, volume flow rates were three times higher from mucosa to serosa than in the opposite direction. From the magnitude of polarization potentials, observed after switching off the current, the conclusion was reached that all of the current-induced volume flow is an osmotic flow due to salt polarization in the unstirred layers of the tissue. By implication, so-called streaming potentials observed during osmotic flows reflect solely polarization effects. In actively transporting gall bladders a 200 μA current increased or decreased the flow rate twice as much as expected from polarization effects alone. Therefore passage of current interfered directly with the active transport mechanism of gall bladder epithelium.  相似文献   

4.
The model proposed by Diamond and Bossert [1] for isotonic water transport has received wide acceptance in recent years. It assumes that the local driving force for water transport is a standing osmotic gradient produced in the lateral intercellular spaces of the epithelial cell layer by active solute transport. While this model is based on work done in absorptive epithelia where the closed to open direction of the lateral space and the direction of net transport are the same, it has been proposed that the lateral spaces could also serve as the site of the local osmotic gradients for water transport in secretory epithelia, where the closed to open direction of the lateral space and net transport are opposed, by actively transporting solute out of the space rather than into it. Operation in the backward direction, however, requires a lower than ambient hydrostatic pressure within the lateral space which would seem more likely to cause the space to collapse with loss of function. On the other hand, most secretory epithelia are characterized by transport into a restricted ductal system which is similar to the lateral intercellular space in the absorptive epithelia in that its closed to open direction is the same as that of net transport. In vitro micropuncture studies on the exocrine pancreas of the rabbit indicate the presence of a small but statistically significant increase in juice osmolality, 6 mOsm/kg H2O, at the site of electrolyte and water secretion in the smallest extralobular ducts with secretin stimulation which suggests that the ductal system in the secretory epithelia rather than the lateral intercellular space is the site of the local osmotic gradients responsible for isotonic water transport.  相似文献   

5.
Determinants of epithelial cell volume   总被引:1,自引:0,他引:1  
Epithelial cell volume is determined by the concentration of intracellular, osmotically active solutes. The high water permeability of the cell membrane of most epithelia prevents the establishment of large osmotic gradients between the cell and the bathing solutions. Steady-state cell volume is determined by the relative rates of solute entry and exit across the cell membranes. Inhibition of solute exit leads to cell swelling because solute entry continues; inhibition of solute entry leads to cell shrinkage because solute exit continues. Cell volume is then a measure of the rate and direction of net solute movements. Epithelial cells are also capable of regulation of the rate of solute entry and exit to maintain intracellular composition. Feedback control of NaCl entry into Necturus gallbladder epithelial cells is demonstrable after inhibition of the Na,K-ATPase or reduction in the NaCl concentration of the serosal bath. Necturus gallbladder cells respond to a change in the osmolality of the perfusion solution by rapidly regulating their volume to control values. This regulatory behavior depends on the transient activation of quiescent transport systems. These transport systems are responsible for the rapid readjustments of cell volume that follow osmotic perturbation. These powerful transporters may also play a role in steady-state volume regulation as well as in the control of cell pH.  相似文献   

6.
Ion and water fluxes in the ileum of rats   总被引:19,自引:11,他引:19       下载免费PDF全文
Studies have been carried out on the movement of salt and water across the small intestine of the rat. Segments of the ileum of anesthetized rats have been perfused in vivo with unbuffered NaCl solutions or isotonic solutions of NaCl and mannitol. Kinetic analysis of movements of Na24 and Cl36 has permitted determination of the efflux and influx of Na and Cl. Net water absorption has been measured using hemoglobin as a reference substance. Water was found to move freely in response to gradients of osmotic pressure. Net water flux from isotonic solutions with varying NaCl concentration was directly dependent on net solute flux. The amount of water absorbed was equivalent to the amount required to maintain the absorbed solute at isotonic concentration. These results have been interpreted as indicating that water movement is a passive process depending on gradients of water activity and on the rate of absorption of solute. The effluxes of Na and Cl are linear functions of concentration in the lumen, but both ions are actively transported by the ileum according to the criterion of Ussing (Acta Physiol. Scand., 1949, 19, 43). The electrical potential difference between the lumen and plasma has been interpreted as a diffusion potential slightly modified by the excess of active Cl flux over active Na flux. The physical properties of the epithelial membrane indicate that it is equivalent to a membrane having negatively charged uniform right circular pores of 36 Å radius occupying 0.001 per cent of the surface area.  相似文献   

7.
A root pressure probe has been used to measure the root pressure (Pr) exerted by excised main roots of young maize plants (Zea Mays L.). Defined gradients of hydrostatic and osmotic pressure could be set up between root xylem and medium to induce radial water flows across the root cylinder in both directions. The hydraulic conductivity of the root (Lpr) was evaluated from root pressure relaxations. When permeating solutes were added to the medium, biphasic root pressure relaxations were observed with water and solute phases and root pressure minima (maxima) which allowed the estimation of permeability (PSr) and reflection coefficients (σsr) of roots. Reflection coefficients were: ethanol, 0.27; mannitol, 0.74; sucrose, 0.54; PEG 1000, 0.82; NaCl, 0.64; KNO3, 0.67, and permeability coefficients (in 10−8 meters per second): ethanol, 4.7; sucrose, 1.6; and NaCl, 5.7. Lpr was very different for osmotic and hydrostatic gradients. For hydrostatic gradients Lpr was 1·10−7 meters per second per megapascal, whereas in osmotic experiments the hydraulic conductivity was found to be an order of magnitude lower. For hydrostatic gradients, the exosmotic Lpr was about 15% larger than the endosmotic, whereas in osmotic experiments the polarity in the water movement was reversed. These results either suggest effects of unstirred layers at the osmotic barrier in the root, an asymmetrical barrier, and/or mechanical effects. Measurements of the hydraulic conductivity of individual root cortex cells revealed an Lp similar to Lpr (hydrostatic). It is concluded that, in the presence of external hydrostatic gradients, water moves primarily in the apoplast, whereas in the presence of osmotic gradients this component is much smaller in relation to the cell-to-cell component (symplasmic plus transcellular transport).  相似文献   

8.
9.
10.
To evaluate the possible role of solute transport during extension growth, water and solute relations of cortex cells of the growing hypocotyl of 5-day-old castor bean seedlings (Ricinus communis L.) were determined using the cell pressure probe. Because the osmotic pressure of individual cells (πi) was also determined, the water potential (ψ) could be evaluated as well at the cell level. In the rapidly growing part of the hypocotyl of well-watered plants, turgor increased from 0.37 megapascal in the outer to 1.04 megapascal in the inner cortex. Thus, there were steep gradients of turgor of up to 0.7 megapascal (7 bar) over a distance of only 470 micrometer. In the more basal and rather mature region, gradients were less pronounced. Because cell turgor ≈ πi and ψ ≈ 0 across the cortex, there were also no gradients of ψ across the tissue. Gradients of cell turgor and πi increased when the endosperm was removed from the cotyledons, allowing for a better water supply. They were reduced by increasing the osmotic pressure of the root medium or by cutting off the cotyledons or the entire hook. If the root was excised to interrupt the main source for water, effects became more pronounced. Gradients completely disappeared and turgor fell to 0.3 megapascal in all layers within 1.5 hours. When excised hypocotyls were infiltrated with 0.5 millimolar CaCl2 solution under pressure via the cut surface, gradients in turgor could be restored or even increased. When turgor was measured in individual cortical cells while pressurizing the xylem, rapid responses were recorded and changes of turgor exceeded that of applied pressure. Gradients could also be reestablished in excised hypocotyls by abrading the cuticle, allowing for a water supply from the wet environment. The steep gradients of turgor and osmotic pressure suggest a considerable supply of osmotic solutes from the phloem to the growing tissue. On the basis of a new theoretical approach, the data are discussed in terms of a coupling between water and solute flows and of a compartmentation of water and solutes, both of which affect water status and extension growth.  相似文献   

11.
Na, Cl, and Water Transport by Rat Colon   总被引:9,自引:1,他引:8       下载免费PDF全文
Segments of the colon of anesthetized rats have been perfused in vivo with isotonic NaCl solutions and isotonic mixtures of NaCl and mannitol. Unidirectional and net fluxes of Na and Cl and the net fluxes of water and mannitol have been measured. Net water transport was found to depend directly on the rate of net Na transport. There was no water absorption from these isotonic solutions in the absence of net solute transport, indicating that water transport in the colon is entirely a passive process. At all NaCl concentrations studied, the lumen was found to be electrically negative to the surface of the colon by 5 to 15 mv. Na fluxes both into and out of the lumen were linear functions of NaCl concentration in the lumen. Net Na absorption from lumen to plasma has been observed to take place against an electrochemical potential gradient indicating that Na is actively transported. This active Na transport has been interpreted in terms of a carrier model system. Cl transport has been found to be due almost entirely to passive diffusion.  相似文献   

12.
P Y Chen  D Pearce  A S Verkman 《Biochemistry》1988,27(15):5713-5718
Quantitative determination of rapid water and solute transport and solute reflection coefficients by light-scattering methods is complicated by dependence of vesicle or cell light scattering on nonvolume factors including solution refractive index, cell motion, and membrane aggregation. To overcome these difficulties, a fluorescence technique has been developed to measure accurately (1) osmotic water permeability (Pf), (2) solute permeability (Ps), and (3) solute reflection coefficient (sigma). The time course of vesicle volume is determined by the self-quenching of entrapped fluorescein sulfonate (FS), the best of a series of dyes screened for self-quenching, brightness, and vesicle loading/trapping. To validate the method, rabbit renal brush border vesicles (BBV) were loaded with 1-10 mM FS for 12 h at 4 degrees C and washed to remove extravesicular FS. FS leakage occurred over greater than 6 h at 4 degrees C and greater than 30 min at 23 degrees C. FS fluorescence vs vesicle volume was calibrated from the time course of fluorescence decrease (excitation 470 nm, emission greater than 515 nm) in response to a series of inward osmotic gradients in a stopped-flow apparatus. At 23 degrees C Pf was 0.005 +/- 0.001 cm/s, independent of osmotic gradient size, and inhibited 67% by 0.5 mM HgCl2. Urea Ps was 2 x 10(-6) cm/s with sigma 0.95-1.00 on the basis of the fluorescence time course analysis and the extravesicular [urea] required to obtain zero initial volume flow (null method) when vesicles were loaded with sucrose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The relationship between epithelial fluid transport, standing osmotic gradients, and standing hydrostatic pressure gradients has been investigated using a perturbation expansion of the governing equations. The assumptions used in the expansion are: (a) the volume of lateral intercellular space per unit volume of epithelium is small; (b) the membrane osmotic permeability is much larger than the solute permeability. We find that the rate of fluid reabsorption is set by the rate of active solute transport across lateral membranes. The fluid that crosses the lateral membranes and enters the intercellular cleft is driven longitudinally by small gradients in hydrostatic pressure. The small hydrostatic pressure in the intercellular space is capable of causing significant transmembrane fluid movement, however, the transmembrane effect is countered by the presence of a small standing osmotic gradient. Longitudinal hydrostatic and osmotic gradients balance such that their combined effect on transmembrane fluid flow is zero, whereas longitudinal flow is driven by the hydrostatic gradient. Because of this balance, standing gradients within intercellular clefts are effectively uncoupled from the rate of fluid reabsorption, which is driven by small, localized osmotic gradients within the cells. Water enters the cells across apical membranes and leaves across the lateral intercellular membranes. Fluid that enters the intercellular clefts can, in principle, exit either the basal end or be secreted from the apical end through tight junctions. Fluid flow through tight junctions is shown to depend on a dimensionless parameter, which scales the resistance to solute flow of the entire cleft relative to that of the junction. Estimates of the value of this parameter suggest that an electrically leaky epithelium may be effectively a tight epithelium in regard to fluid flow.  相似文献   

14.
At the ultrastructural level, epithelia performing solute-linked water transport possess long, narrow channels open at one end and closed at the other, which may constitute the fluid transport route (e.g., lateral intercellular spaces, basal infoldings, intracellular canaliculi, and brush-border microvilli). Active solute transport into such folded structures would establish standing osmotic gradients, causing a progressive approach to osmotic equilibrium along the channel's length. The behavior of a simple standing-gradient flow system has therefore been analyzed mathematically because of its potential physiological significance. The osmolarity of the fluid emerging from the channel's open end depends upon five parameters: channel length, radius, and water permeability, and solute transport rate and diffusion coefficient. For ranges of values of these parameters encountered experimentally in epithelia, the emergent osmolarity is found by calculation to range from isotonic to a few times isotonic; i.e., the range encountered in epithelial absorbates and secretions. The transported fluid becomes more isotonic as channel radius or solute diffusion coefficient is decreased, or as channel length or water permeability is increased. Given appropriate parameters, a standing-gradient system can yield hypertonic fluids whose osmolarities are virtually independent of transport rate over a wide range, as in distal tubule and avian salt gland. The results suggest that water-to-solute coupling in epithelia is due to the ultrastructural geometry of the transport route.  相似文献   

15.
Unlike most Lactobacillus acidophilus strains, a specific strain, L. acidophilus IFO 3532, was found to grow in rich medium containing 1 M sodium acetate, KCl, or NaCl. This strain could also grow with up to 1.8 M NaCl or 3 M nonelectrolytes (fructose, xylose, or sorbitol) added. Thus, this strain was tolerant to osmotic pressures up to 2.8 osM. A search for an intracellular solute which conferred osmoprotection led to the identification of glycine betaine (betaine). Betaine was accumulated to high concentrations in cells growing in MRS medium supplemented with 1 M KCl or NaCl. Uptake of [14C]betaine by L. acidophilus 3532 cells suspended in buffer was stimulated by increasing the medium osmotic pressure with 1 M KCl or NaCl. The accumulated betaine was not metabolized further; transport was relatively specific for betaine and was dependent on an energy source. Other lactobacilli, more osmosensitive than strain 3532, including L. acidophilus strain E4356, L. bulgaricus 8144, and L. delbrueckii 9649, showed lower betaine transport rates in response to an osmotic challenge than L. acidophilus 3532. Experiments with chloramphenicol-treated L. acidophilus 3532 cells indicated that the transport system was not induced but appeared to be activated by an increase in osmotic pressure.  相似文献   

16.
Two independent methods, induced osmosis and solvent drag, were used to determine the reflection coefficients for NaCl (sigma NaCl) in brush border and basolateral membrane vesicles isolated from rabbit proximal tubule. In the induced osmosis method, vesicles loaded with sucrose were subjected to varying inward NaCl gradients in a stopped-flow apparatus. sigma NaCl was determined from the osmolality of the NaCl solution required to cause no initial osmotic water flux as measured by light scattering (null point). By this method sigma NaCl was greater than 0.92 for both apical and basolateral membranes with best estimates of 1.0. sigma NaCl was determined by the solvent drag method using the Cl-sensitive fluorescent indicator, 6-methoxy-N-[3-sulfopropyl]quinolinium (SPQ), to detect the drag of Cl into vesicles by inward osmotic water movement caused by an outward osmotic gradient. sigma NaCl was determined by comparing experimental data with theoretical curves generated using the coupled flux equations of Kedem and Katchalsky. By this method we found that sigma NaCl was greater than 0.96 for apical and greater than 0.98 for basolateral membrane vesicles, with best estimates of 1.0 for both membranes. These results demonstrate that sigma NaCl for proximal tubule apical and basolateral membranes are near unity. Taken together with previous results, these data suggest that proximal tubule water channels are long narrow pores that exclude NaCl.  相似文献   

17.
High-resolution nuclear magnetic resonance images (using very short spin-echo times of 3.8 milliseconds) of cross-sections of excised roots of the halophyte Aster tripolium showed radial cell strands separated by air-filled spaces. Radial insertion of the pressure probe (along the cell strands) into roots of intact plants revealed a marked increase of the turgor pressure from the outermost to the sixth cortical layer (from about 0.1-0.6 megapascals). Corresponding measurements of intracellular osmotic pressure in individual cortical cells (by means of a nanoliter osmometer) showed an osmotic pressure gradient of equal magnitude to the turgor pressure. Neither gradient changed significantly when the plants were grown in, or exposed for 1 hour to, media of high salinity. Differences were recorded in the ability of salts and nonelectrolytes to penetrate the apoplast in the root. The reflection coefficients of the cortical cells were approximately 1 for all the solutes tested. Excision of the root from the stem resulted in a collapse of the turgor and osmotic pressure gradients. After about 15 to 30 minutes, the turgor pressure throughout the cortex attained an intermediate (quasistationary) level of about 0.3 megapascals. This value agreed well with the osmotic value deduced from plasmolysis experiments on excised root segments. These and other data provided conclusions about the driving forces for water and solute transport in the roots and about the function of the air-filled radial spaces in water transport. They also showed that excised roots may be artifactual systems.  相似文献   

18.
A standing gradient model of the lateral intercellular space is presented which includes a basement membrane of finite solute permeability. The solution to the model equations is estimated analytically using the "isotonic convection approximation" of Segel. In the case of solute pumps uniformly distributed along the length of the channel, the achievement of isotonic transport depends only on the water permeability of the cell membranes. The ability of the model to transport water against an adverse osmotic gradient is the sum of two terms: The first term is simply that for a well-stirred compartment model and reflects basement membrane solute permeability. The second term measures the added strength due to diffusion limitation within the interspace. It is observed, however, that the ability for uphill water transport due to diffusion limitation is diminished by high cell membrane water permeability. For physiologically relevant parameters, it appears that the high water permeability required for isotonic transport renders the contribution of the standing gradient relatively ineffective in transport against an osmotic gradient. Finally, when the model transports both isotonically and against a gradient, it is shown that substantial intraepithelial solute polarization effects are unavoidable. Thus, the measured epithelial water permeability will grossly underestimate the water permeability of the cell membranes. The accuracy of the analytic approximation is demonstrated by numerical solution of the complete model equations.  相似文献   

19.
Over the last decade, several cotransport studies have led to the proposal of secondary active transport of water, challenging the dogma that all water transport is passive. The major observation leading to this interpretation was that a Na+ influx failed to reproduce the large and rapid cell swelling induced by Na+/solute cotransport. We have investigated this phenomenon by comparing a Na+/glucose (hSGLT1) induced water flux to water fluxes triggered either by a cationic inward current (using ROMK2 K+ channels) or by a glucose influx (using GLUT2, a passive glucose transporter). These proteins were overexpressed in Xenopus oocytes and assayed through volumetric measurements combined with double-electrode electrophysiology or radioactive uptake measurements. The osmotic gradients driving the observed water fluxes were estimated by comparison with the swelling induced by osmotic shocks of known amplitude. We found that, for equivalent cation or glucose uptakes, the combination of substrate accumulations observed with ROMK2 and GLUT2 are sufficient to provide the osmotic gradient necessary to account for a passive water flux through SGLT1. Despite the fact that the Na+/glucose stoichiometry of SGLT1 is 2:1, glucose accumulation accounts for two-thirds of the osmotic gradient responsible for the water flux observed at t = 30 s. It is concluded that the different accumulation processes for neutral versus charged solutes can quantitatively account for the fast water flux associated with Na+/glucose cotransport activation without having to propose the presence of secondary active water transport.  相似文献   

20.
The mechanisms of water transport across the rabbit renal proximal convoluted tubule were approached by measuring osmotic permeabilities and solute reflection coefficients of the brush-border and the basolateral membranes. Plasma and intracellular membrane vesicles were isolated from rabbit renal cortex by centrifugation on a Percoll gradient. Three major turbidity bands were obtained: a fraction of purified basolateral membranes (BLMV), the two others being brush-border (BBMV) and endoplasmic reticulum (ERMV) membrane vesicles. The osmotic permeability (Pf) of the three types of vesicle was measured using stop-flow techniques and their geometry was determined by quasi-elastic light scattering. Pf was equal to 123 +/- 8 microns/s (n = 10) for BBMV, 166 +/- 10 microns/s (n = 10) for BLMV and 156 +/- 9 microns/s (n = 4) for ERMV (T = 26 degrees C). A transcellular water permeability, per unit of apical surface area, of 71 microns/s was calculated considering that the luminal and the basolateral membranes act as two conductances in series. This value is in close agreement, after appropriate normalizations, with previously reported transepithelial water permeabilities obtained using in vitro microperfusion techniques thus supporting the hypothesis of a predominantly transcellular route for water flow across rabbit proximal convoluted tubule. The addition of 0.4 mM HgCl2, a sulfhydryl reagent, decreased Pf about 60% in three types of membrane providing evidence for the existence of proteic pathways. NaCl and KCl reflection coefficients were measured and found to be close to one for plasma and intracellular membranes suggesting that the water channels are not shared by salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号