首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell surface-located sialic acids of the capsule and the lipooligosaccharide (LOS) are both pivotal virulence factors in Neisseria meningitidis, promoting survival and dissemination of this pathogen which can cause both sepsis and meningitis. With the aid of a unique set of isogenic meningococcal mutants defective in the expression of cell surface-located sialic acids, we have demonstrated that encapsulation hinders the primary event in the development of the disease, but the spontaneous switching of encapsulated wild-type bacteria to a capsule-negative phenotype promotes meningococcal adherence and invasion into mucosal epithelial cells. Genetic analysis of the capsule-negative, invasive bacteria revealed a unique mechanism for modulation of capsule expression based on the reversible inactivation of an essential sialic acid biosynthesis gene, siaA, by insertion/excision of a naturally occurring insertion sequence element, IS1301. Inactivation of siaA regulates both capsule expression and endogenous LOS sialylation. This is the first example of an insertion sequence element-based genetic switch mechanism in the pathogenic bacterium and is an important step in the understanding of bacterial virulence.  相似文献   

2.
We have identified and defined the function of kpsF of Neisseria meningitidis and the homologues of kpsF in encapsulated K1 and K5 Escherichia coli. KpsF was shown to be the arabinose-5-phosphate isomerase, an enzyme not previously identified in prokaryotes, that mediates the interconversion of ribulose 5-phosphate and arabinose 5-phosphate. KpsF is required for 3-deoxy-d-manno-octulosonic acid (Kdo) biosynthesis in N. meningitidis. Mutation of kpsF or the gene encoding the CMP-Kdo synthetase (kpsU/kdsB) in N. meningitidis resulted in expression of a lipooligosaccharide (LOS) structure that contained only lipid A and reduced capsule expression in the five invasive disease-associated meningococcal serogroups (A, B, C, Y, and W-135). The step linking meningococcal capsule and LOS biosynthesis was shown to be Kdo production as the expression of capsule was wild type in a Kdo transferase (kdtA) mutant. Thus, in addition to lipooligosaccharide assembly, Kdo is required for meningococcal capsular polysaccharide expression. Furthermore, N. meningitidis, unlike enteric Gram-negative bacteria, can survive and synthesize only unglycosylated lipid A.  相似文献   

3.
Murkin AS  Chou WK  Wakarchuk WW  Tanner ME 《Biochemistry》2004,43(44):14290-14298
This paper reports the first identification of a fully functional hydrolyzing UDP-N-acetylglucosamine 2-epimerase from a bacterial source. The epimerase (known as SiaA or NeuC) from Neisseria meningitidis MC58 group B is shown to catalyze the conversion of UDP-GlcNAc into ManNAc and UDP in the first step of sialic acid (N-acetylneuraminic acid) biosynthesis. The mechanism is proposed to involve an anti elimination of UDP to form 2-acetamidoglucal as an intermediate, followed by the syn addition of water. The observation that the alpha-anomer of ManNAc is the true product and that solvent deuterium is incorporated at C-2 is consistent with this mechanism. The use of the (18)O-labeled substrate confirms that the overall hydrolysis reaction proceeds via cleavage of the C-O bond. Furthermore, the putative intermediate 2-acetamidoglucal is shown to serve as a catalytically competent substrate and is enzymatically hydrated to give ManNAc exclusively. Isotope effect studies show that cleavage of the C-H bond is not rate limiting during catalysis. Mutagenesis studies show that three active site carboxylate residues are crucial for catalysis. In two of the mutants that were studied (E122Q and D131N), 2-acetamidoglucal was released from the active site during catalysis, providing direct evidence that the enzyme is capable of catalyzing the anti elimination of UDP from UDP-GlcNAc.  相似文献   

4.
Cloning, expression, and characterization of sialic acid synthases   总被引:2,自引:0,他引:2  
The most commonly occurring sialic acid, N-acetylneuraminic acid, is the repeating unit in polysialic acid chain of human neuronal cell adhesion molecule as well as in capsular polysialic acid of neuroinvasive bacteria, Escherichia coli K1 and Neisseria meningitidis. Sialic acid synthesis and polymerization occur in slightly different pathways in animals and bacteria. N-Acetylneuraminic acid (NeuNAc) is synthesized by the condensation of phosphoenolpyruvate and N-acetylmannosamine by NeuNAc synthase in bacteria. The mammalian homologue N-acetylneuraminic acid-9-phosphate (NeuNAc-9-P) synthase uses N-acetylmannosamine-6-phosphate in the condensation reaction to produce NeuNAc-9-P. Both subfamilies of sialic acid synthases possess N-terminal triosephosphate isomerase barrel domain and C-terminal antifreeze protein domain. We report cloning of the genes, expression, purification, and characterization of human NeuNAc-9-P synthase and N. meningitidis NeuNAc synthase. Stability of the purified enzymes and effects of pH and temperature on their activities were evaluated. Enzyme kinetics and preliminary mutagenesis experiments reveal the importance of C-terminal antifreeze protein domain and a conserved cysteine residue for the enzyme activities.  相似文献   

5.
The insertion element IS1301 has been shown to mediate capsule phase variation in Neisseria meningitidis found in N. serogroup B by reversible insertional inactivation of the siaA gene. We have determined the target site specificity of this element by cloning and sequencing the insertion sites of 12 identical IS1301 copies found in N. meningitidis B1940. A target consensus core of 5'-AYTAG-3' was identified, with the central TA being duplicated following insertion. Additional features around the target sites, including extended palindromic symmetry, stem-loop formation, and the high incidence of AT tracts, indicate that other factors, such as DNA secondary structure, are involved in target recognition. The left inverted repeat of an IS1016-like element acts as a hot spot for insertion, with one insertion element combination located upstream of their gene. According to further sequence analysis, we were able to place IS1301 in the IS5 subgroup within the IS4 family of elements. A survey of 135 Neisseria strains indicated the presence of IS1301 in 27.9 to 33.3% of N. meningitides serogroup B, C, and W135 strains and in 86.7% of serogroup Y strains. IS1301 did not occur in serogroup A strains, in Neisseria gonorrhoeae, or in apathogenic Neisseria spp.  相似文献   

6.
The lipooligosaccharide (LOS) of Haemophilus influenzae contains sialylated glycoforms, and a sialyltransferase, Lic3A, has been previously identified. We report evidence for two additional sialyltransferases, SiaA, and LsgB, that affect N-acetyllactosamine containing glycoforms. Mutations in genes we have designated siaA and lsgB affected only the sialylated glycoforms containing N-acetylhexosamine. A mutation in siaA resulted in the loss of glycoforms terminating in sialyl-N-acetylhexosamine and the appearance of higher molecular weight glycoforms, containing the addition of phosphoethanolamine, N-acetylgalactosamine, and N-acetylneuraminic acid. Chromosomal complementation of the siaA mutant resulted in the expression of the original sialylated LOS phenotype. A mutation in lic3A resulted in the loss of sialylation only in glycoforms lacking N-acetylhexosamine and had no effect on sialylation of the terminal N-acetyllactosamine epitope. A double mutant in siaA and lic3A resulted in the complete loss of sialylation of the terminal N-acetyllactosamine epitope and expression of the higher molecular weight sialylated glycoforms seen in the siaA mutant. Mutation of lsgB resulted in persistence of sialylated glycoforms but a reduction in N-acetyllactosamine containing glycoforms. A triple mutant of siaA, lic3A, and lsgB contained no sialylated glycoforms. These results demonstrate that the sialylation of the LOS of H. influenzae is a complex process involving multiple sialyltransferases.  相似文献   

7.
The K1 capsular polysaccharide, a polymer of sialic acid, is an important virulence determinant of extraintestinal pathogenic Escherichia coli. The genes responsible for the synthesis and expression of the polysialic acid capsule of E. coli K1 are located on the 17-kb kps gene cluster, which is functionally divided into three regions. Central region 2 encodes proteins necessary for the synthesis, activation, and polymerization of sialic acid, while flanking regions 1 and 3 are involved in polymer transport to the cell surface. In this study, we identified two genes at the proximal end of region 2, neuD and neuB, which encode proteins with predicted sizes of 22.7 and 38.7 kDa, respectively. Several observations suggest that the neuB gene encodes sialic acid synthase. EV24, a neuB chromosomal mutant that expresses a capsule when provided exogenous sialic acid, could be complemented in trans by the cloned neuB gene. In addition, NeuB has significant sequence similarity to the product of the cpsB gene of Neisseria meningitidis group B, which is postulated to encode sialic acid synthase. We also present data indicating that neuD has an essential role in K1 polymer production. Cells harboring pSR426, which contains all of region 2 but lacks region 1 and 3 genes, produce an intracellular polymer. In contrast, no polymer accumulated in cells carrying a derivative of pSR426 lacking a functional neuD gene. Unlike strains with mutations in neuB, however, neuD mutants are not complemented by exogenous sialic acid, suggesting that NeuD is not involved in sialic acid synthesis. Additionally, cells harboring a mutation in neuD accumulated sialic acid and CMP-sialic acid. We also found no significant differences between the endogenous and exogenous sialyltransferase activities of a neuD mutant and the wild-type organism. NeuD shows significant similarity to a family of bacterial acetyltransferases, leading to the theory that NeuD is an acetyltransferase which may exert its influences through modification of other region 2 proteins.  相似文献   

8.
Capsule expression in Neisseria meningitidis is encoded by the cps locus comprised of genes required for biosynthesis and surface translocation. Located adjacent to the gene encoding the polysialyltransferase in serogroups expressing sialic acid-containing capsule, NMB0065 is likely a member of the cps locus, but it is not found in serogroups A or X that express non-sialic acid capsules. To further understand its role in CPS expression, NMB0065 mutants were created in the serogroups B, C and Y strains. The mutants were as sensitive as unencapsulated strains to killing by normal human serum, despite producing near wild-type levels of CPS. Absence of surface expression of capsule was suggested by increased surface hydrophobicity and confirmed by immunogold electron microscopy, which revealed the presence of large vacuoles containing CPS within the cell. GC–MS and NMR analyses of purified capsule from the mutant revealed no apparent changes in polymer structures and lipid anchors. Mutants of NMB0065 homologues in other sialic acid CPS expressing meningococcal serogroups had similar phenotypes. Thus, NMB0065 (CtrG) is not involved in biosynthesis or lipidation of sialic acid-containing capsule but encodes a protein required for proper coupling of the assembly complex to the membrane transport complex allowing surface expression of CPS.  相似文献   

9.
Sialic acids participate in many important biological recognition events, yet eukaryotic sialic acid biosynthetic genes are not well characterized. In this study, we have identified a novel human gene based on homology to the Escherichia coli sialic acid synthase gene (neuB). The human gene is ubiquitously expressed and encodes a 40-kDa enzyme. The gene partially restores sialic acid synthase activity in a neuB-negative mutant of E. coli and results in N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) production in insect cells upon recombinant baculovirus infection. In vitro the human enzyme uses N-acetylmannosamine 6-phosphate and mannose 6-phosphate as substrates to generate phosphorylated forms of Neu5Ac and KDN, respectively, but exhibits much higher activity toward the Neu5Ac phosphate product.  相似文献   

10.
Polysialic acid (PSA) capsules are cell-associated homopolymers of alpha2,8-, alpha2,9-, or alternating alpha2,8/2,9-linked sialic acid residues that function as essential virulence factors in neuroinvasive diseases caused by certain strains of Escherichia coli and Neisseria meningitidis. PSA chains structurally identical to the bacterial alpha2,8-linked capsular polysaccharides are also synthesized by the mammalian central nervous system, where they regulate neuronal function in association with the neural cell adhesion molecule (NCAM). Despite the structural identity between bacterial and NCAM PSAs, the respective polysialyltransferases (polySTs) responsible for polymerizing sialyl residues from donor CMP-sialic acid are not homologous glycosyltransferases. To better define the mechanism of capsule biosynthesis, we established the functional interchangeability of bacterial polySTs by complementation of a polymerase-deficient E. coli K1 mutant with the polyST genes from groups B or C N. meningitidis and the control E. coli K92 polymerase gene. The biochemical and immunochemical results demonstrated that linkage specificity is dictated solely by the source of the polymerase structural gene. To determine the molecular basis for linkage specificity, we created chimeras of the K1 and K92 polySTs by overlap extension PCR. Exchanging the first 52 N-terminal amino acids of the K1 NeuS with the C terminus of the K92 homologue did not alter specificity of the resulting chimera, whereas exchanging the first 85 or reciprocally exchanging the first 100 residues did. These results demonstrated that linkage specificity is dependent on residues located between positions 53 and 85 from the N terminus. Site-directed mutagenesis of the K92 polyST N terminus indicated that no single residue alteration was sufficient to affect specificity, consistent with the proposed function of this domain in orienting the acceptor. The combined results provide the first evidence for residues critical to acceptor binding and elongation in polysialyltransferase.  相似文献   

11.
12.
Lysophosphatidic acid (LPA) and phosphatidic acid (PA) are critical phospholipid intermediates in the biosynthesis of cell membranes. In Escherichia coli, LPA acyltransferase (1-acyl-sn-glycerol-3-phosphate acyltransferase; EC 2.3.1.51) catalyses the transfer of an acyl chain from either acyl-coenzyme A or acyl-acyl carrier protein onto LPA to produce PA. While E. coli possesses one essential LPA acyltransferase (PlsC), Neisseria meningitidis possesses at least two LPA acyltransferases. This study describes the identification and characterization of nlaB (neisserial LPA acyltransferase B), the second LPA acyltransferase identified in N. meningitidis. The gene was located downstream of the Tn916 insertion in N. meningitidis mutant 469 and differed in nucleotide and predicted amino acid sequence from the previously characterized neisserial LPA acyltransferase homologue nlaA. NlaB has specific LPA acyltransferase activity, as demonstrated by complementation of an E. coli plsC(Ts) mutant in trans, by decreased levels of LPA acyltransferase activity in nlaB mutants and by lack of complementation of E. coli plsB26,X50, a mutant defective in the first acyltransferase step in phospholipid biosynthesis. Meningococcal nlaA mutants accumulated LPA and demonstrated alterations in membrane phospholipid composition, yet retained LPA acyltransferase activity. In contrast, meningococcal nlaB mutants exhibited decreased LPA acyltransferase activity, but did not accumulate LPA or display any other observable membrane changes. We propose that N. meningitidis possesses at least two LPA acyltransferases to provide for the production of a greater diversity of membrane phospholipids.  相似文献   

13.
14.
The capsular polysaccharide is a critical virulence factor of the swine and zoonotic pathogen Streptococcus suis serotype 2. The capsule of this bacterium is composed of five different sugars, including terminal sialic acid. To evaluate the role of sialic acid in the pathogenesis of the infection, the neuC gene, encoding for an enzyme essential for sialic acid biosynthesis, was inactivated in a highly virulent S. suis serotype 2 strain. Using transmission electron microscopy, it was shown that inactivation of neuC resulted in loss of expression of the whole capsule. Compared to the parent strain, the ΔneuC mutant strain was more phagocytosed by macrophages and was also severely impaired in virulence in a mouse infection model. Both native and desialylated S. suis serotype 2 purified capsular polysaccharides were recognized by a polyclonal anti-whole cell S. suis serotype 2 serum and a monospecific polyclonal anti-capsule serotype 2 serum. In contrast, only the native capsular polysaccharide was recognized by a monoclonal antibody specific for the sialic acid moiety of the serotype 2 capsule. Together, our results infer that sialylation of S. suis serotype 2 may be essential for capsule expression, but that this sugar is not the main epitope of this serotype.  相似文献   

15.
BackgroundSialylation of glycoproteins and glycolipids is important for biological processes such as cellular communication, cell migration and protein function. Biosynthesis of CMP-sialic acid, the essential substrate, comprises five enzymatic steps, involving ManNAc and sialic acid and their phosphorylated forms as intermediates. Genetic diseases in this pathway result in different and tissue-restricted phenotypes, which is poorly understood.Methods and resultsWe aimed to study the mechanisms of sialic acid metabolism in knockouts (KO) of the sialic acid pathway in two independent cell lines. Sialylation of cell surface glycans was reduced by KO of GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase), NANS (sialic acid synthase) and CMAS (N-acylneuraminate cytidylyltransferase) genes, but was largely unaffected in NANP (N-acylneuraminate-9-phosphatase) KO, as studied by MAA and PNA lectin binding. NANP is the third enzyme in sialic acid biosynthesis and dephosphorylates sialic acid 9-phosphate to free sialic acid. LC-MS analysis of sialic acid metabolites showed that CMP-sialic acid was dramatically reduced in GNE and NANS KO cells and undetectable in CMAS KO. In agreement with normal cell surface sialylation, CMP-sialic acid levels in NANP KO were comparable to WT cells, even though sialic acid 9-phosphate, the substrate of NANP accumulated. Metabolic flux analysis with 13C6-labelled ManNAc showed a lower, but significant conversion of ManNAc into sialic acid.ConclusionsOur data provide evidence that NANP activity is not essential for de novo sialic acid production and point towards an alternative phosphatase activity, bypassing NANP.General significanceThis report contributes to a better understanding of sialic acid biosynthesis in humans.  相似文献   

16.
The serogroups B, C, W135 and Y of Neisseria meningitidis express chemically and immunologically distinct capsular polysaccharides containing sialic acid. In the case of serogroup B meningococci sialic acid is synthesized by the gene products of a locus termed sia and forms the homopolymers of the capsule. The organization of the genes required for sialic acid synthesis in serogroups B, C, W135 and Y was elucidated by PCR technology. Cloning, sequencing and the functional expression of the polysialyltransferase (PST) genes of serogroups B and C demonstrated that the difference in capsule composition derives from the presence of related, but distinct siaD genes coding for PSTs. Analysis of meningococci of serogroups W135 and Y expressing sialic acid heteropolymers revealed that the DNA sequences of the corresponding genetic loci in these serogroups were highly homologous, but differed completely from the siaD genes of serogroups B and C. This finding suggests that enzymes unrelated to those of serogroups B and C are required for the formation of sialic acid heteropolymers characteristic of the capsules of serogroups W135 and Y.  相似文献   

17.
Neisseria meningitidis is an important cause of septicemia and meningitis. To cause disease, the bacterium must successfully survive in the bloodstream where it has to avoid being killed by host innate immune mechanisms, particularly the complement system. A number of pathogenic microbes bind factor H (fH), the negative regulator of the alternative pathway of complement activation, to promote their survival in vivo. In this study, we show that N. meningitidis binds fH to its surface. Binding to serogroups A, B, and C N. meningitidis strains was detected by FACS and Far Western blot analysis, and occurred in the absence of other serum factors such as C3b. Unlike Neisseria gonorrhoeae, binding of fH to N. meningitidis was independent of sialic acid on the bacterium, either as a component of its LPS or its capsule. Characterization of the major fH binding partner demonstrated that it is a 33-kDa protein; examination of insertion mutants showed that porins A and B, outer membrane porins expressed by N. meningitidis, do not contribute significantly to fH binding. We examined the physiological consequences of fH bound to the bacterial surface. We found that fH retains its activity as a cofactor of factor I when bound to the bacterium and contributes to the ability of N. meningitidis to avoid complement-mediated killing in the presence of human serum. Therefore, the recruitment of fH provides another mechanism by which this important human pathogen evades host innate immunity.  相似文献   

18.
Neisseria meningitidis serogroup C is a major cause of bacterial meningitis and septicaemia. This human pathogen is protected by a capsule composed of alpha2,9-linked polysialic acid that represents an important virulence factor. In the majority of strains, the capsular polysaccharide is modified by O-acetylation at C-7 or C-8 of the sialic acid residues. The gene encoding the capsule modifying O-acetyltransferase is part of the capsule gene complex and shares no sequence similarities with other proteins. Here, we describe the purification and biochemical characterization of recombinant OatC. The enzyme was found as a homodimer, with the first 34 amino acids forming an efficient oligomerization domain that worked even in a different protein context. Using acetyl-CoA as donor substrate, OatC transferred acetyl groups exclusively onto polysialic acid joined by alpha2,9-linkages and did not act on free or CMP-activated sialic acid. Motif scanning revealed a nucleophile elbow motif (GXS286XGG), which is a hallmark of alpha/beta-hydrolase fold enzymes. In a comprehensive site-directed mutagenesis study, we identified a catalytic triad composed of Ser-286, Asp-376, and His-399. Consistent with a double-displacement mechanism common to alpha/beta-hydrolase fold enzymes, a covalent acetylenzyme intermediate was found. Together with secondary structure prediction highlighting an alpha/beta-hydrolase fold topology, our data provide strong evidence that OatC belongs to the alpha/beta-hydrolase fold family. This clearly distinguishes OatC from all other bacterial sialate O-acetyltransferases known so far because these are members of the hexapeptide repeat family, a class of acyltransferases that adopt a left-handed beta-helix fold and assemble into catalytic trimers.  相似文献   

19.
In this study, we report the first cloning and characterization of a N-acetylneuraminic acid phosphate synthase gene from Drosophila melanogaster, an insect in the protostome lineage. The gene is ubiquitously expressed at all stages of Drosophila development and in Schneider cells. Similar to the human homologue, the gene encodes an enzyme with dual substrate specificity that can use either N-acetylmannosamine 6-phosphate or mannose 6-phosphate to generate phosphorylated forms of both the sialic acids, N-acetylneuraminic acid and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid, respectively, when expressed in either bacterial or baculoviral expression systems. The identification of a functional sialic acid synthase in Drosophila indicates that insects have the biosynthetic capability to produce sialic acids endogenously. Although sialylation is widely distributed in organisms of the deuterstome lineage, genetic evidence concerning the presence or absence of sialic acid metabolism in organisms of the protostome lineage has been lacking. Homology searches of the Drosophila genome identified putative orthologues of other genes required for sialylation of glycoconjugates.  相似文献   

20.
The serogroups B, C, W135 and Y of Neisseria meningitidis express chemically and immunologically distinct capsular polysaccharides containing sialic acid. In the case of serogroup B meningococci sialic acid is synthesized by the gene products of a locus termed sia and forms the homopolymers of the capsule. The organization of the genes required for sialic acid synthesis in serogroups B, C, W135 and Y was elucidated by PCR technology. Cloning, sequencing and the functional expression of the polysialyltransferase (PST) genes of serogroups B and C demonstrated that the difference in capsule composition derives from the presence of related, but distinct siaD genes coding for PSTs. Analysis of meningococci of serogroups W135 and Y expressing sialic acid heteropolymers revealed that the DNA sequences of the corresponding genetic loci in these serogroups were highly homologous, but differed completely from the siaD genes of serogroups B and C. This finding suggests that enzymes unrelated to those of serogroups B and C are required for the formation of sialic acid heteropolymers characteristic of the capsules of serogroups W135 and Y. Received: 24 June 1997 / Accepted: 23 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号