首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When individual enzyme activities of the fatty acid synthetase (FAS) system were assayed in extracts from five different plant tissues, acetyl-CoA:acyl carrier protein (ACP) transacylase and beta-ketoacyl-ACP synthetases I and II had consistently low specific activities in comparison with the other enzymes of the system. However, two of these extracts synthesized significant levels of medium chain fatty acids (rather than C16 and C18 acid) from [14C]malonyl-CoA; these extracts had elevated levels of acetyl-CoA:ACP transacylase. To explore the role of the acetyl transacylase more carefully, this enzyme was purified some 180-fold from spinach leaf extracts. Varying concentrations of the transacylase were then added either to spinach leaf extracts or to a completely reconstituted FAS system consisting of highly purified enzymes. The results suggested that: (a) acetyl-CoA:ACP transacylase was the enzyme catalyzing the rate-limiting step in the plant FAS system; (b) increasing concentration of this enzyme markedly increased the levels of the medium chain fatty acids, whereas increase of the other enzymes of the FAS system led to increased levels of stearic acid synthesis; and (c) beta-ketoacyl-ACP synthetase I was not involved in the rate-limiting step. It is suggested that modulation of the activity of acetyl-CoA:ACP transacylase may have important implications in the type of fatty acid synthesized, as well as the amount of fatty acids formed.  相似文献   

2.
All component activities involved in the synthesis of fatty acid were detected in crude extracts of developing safflower seeds. The crude extracts were fractionated into three portions by polyethylene glycol (0–5, 5–15, and 15% supernatant). Acetyl-CoA:acyl carrier protein (ACP) transacylase was precipitated about 66% by 5% polyethylene glycol. β-Ketoacyl-ACP reductase and enoyl-ACP reductase I were completely recovered in the 5–15% fraction. β-Ketoacyl-ACP synthetase and enoyl-ACP reductase II were in the 15% supernatant fraction. Malonyl-CoA:ACP transacylase and β-hydroxyacyl-ACP dehydrase were distributed into both fractions of 5–15 and 15% supernatant. When the 5–15% fraction was gel-filtrated on Sephadex G-200 column, β-hydroxyacyl-ACP dehydrase and malonyl-CoA:ACP transacylase were clearly separated from other enzymes, but β-Ketoacyl-ACP reductase and enoyl-ACP reductase I overlapped. However, by hydroxyapatite chromatography, these two reductases were clearly separated. Properties of each enzyme were examined with the samples fractionated by polyethylene glycol. β-Ketoacyl-ACP reductase preferably utilized NADPH (Km = 16 μM) as hydrogen donor. The Km for acetoacetyl-ACP was 9 μm. β-Hydroxyacyl-ACP dehydrase had a Km of 12 μm for crotonyl-ACP. Enoyl-ACP reductase had two forms, I and II, and these two reductases differed from each other as follows: (a) separation by polyethylene glycol (15%) fractionation; (b) the optimum pH; (c) the hydrogen donor specificity; (d) the substrate specificity. From these results, it is concluded that the FAS system of developing safflower seeds was nonassociated and similar to the procaryotic type of Escherichia coli.  相似文献   

3.
β-Ketoacyl-acyl carrier protein (ACP) synthetase II (KAS II) is one of three Escherichia coli isozymes that catalyze the elongation of growing fatty acid chains by condensation of acyl-ACP with malonyl-ACP. Overexpression of this enzyme has been found to be extremely toxic to E. coli, much more so than overproduction of either of the other KAS isozymes, KAS I or KAS III. The immediate effect of KAS II overproduction is the cessation of phospholipid synthesis, and this inhibition is specifically due to the blockage of fatty acid synthesis. To determine the cause of this inhibition, we examined the intracellular pools of ACP, coenzyme A (CoA), and their acyl thioesters. Although no significant changes were detected in the acyl-ACP pools, the CoA pools were dramatically altered by KAS II overproduction. Malonyl-CoA increased to about 40% of the total cellular CoA pool upon KAS II overproduction from a steady-state level of around 0.5% in the absence of KAS II overproduction. This finding indicated that the conversion of malonyl-CoA to fatty acids had been blocked and could be explained if either the conversion of malonyl-CoA to malonyl-ACP and/or the elongation reactions of fatty acid synthesis had been blocked. Overproduction of malonyl-CoA:ACP transacylase, the enzyme catalyzing the conversion of malonyl-CoA to malonyl-ACP, partially relieved the toxicity of KAS II overproduction, consistent with a model in which high levels of KAS II blocks access of the other KAS isozymes to malonyl-CoA:ACP transacylase.  相似文献   

4.
A synthetic gene encoding spinach acyl carrier protein I (ACP-I) was fused to a gene encoding the Fc-binding portion of staphylococcal protein A. This gene fusion, under the control of the PR promoter, was expressed at high levels in Escherichia coli producing a 42 kDa fusion protein. This fusion protein was phosphopantethenylated in E. coli. In vitro the ACP portion of the fusion protein was able to participate in acyl ACP synthetase reactions, plant malonyl-CoA:ACP transacylase (MCT) reactions, and plant fatty acid synthetase (FAS) reactions. Inhibitory effects of high ACP concentrations on in vitro plant FAS were observed with the unfused ACP-1 but not with the fusion protein. As with unfused ACP-I, the fusion protein was a poor substrate for E. coli FAS reactions. When injected into rabbits, the fusion protein was also able to generate antiserum to spinach ACP-I.  相似文献   

5.
beta-Ketoacyl-acyl carrier protein (ACP) synthetase I was purified 180-fold from crude extracts of spinach leaves. The purified preparation was completely free from other component enzymes of the de novo fatty acid synthetase (FAS) system. Its molecular weight was estimated to be 56,000 by gel filtration. The apparent Km value for malonyl-CoA in the presence of ACP and malonyl-CoA:ACP transacylase was 4 microM. Purified synthetase I was highly active with acyl-ACP having chain lengths from C2 to C14, with hexanoyl-ACP being the most effective substrate, but palmitoyl-ACP was far less effective and stearoyl-ACP almost inactive. The antibiotic, cerulenin, strongly inhibited synthetase I activity. The inhibition by cerulenin was protected by prior incubation with hexanoyl-ACP, decanoyl-ACP, and myristoyl-ACP. The synthetase was inhibited by 1 mM p-CMB and 5 mM NEM, but not by 1 mM arsenite.  相似文献   

6.
Photocontrol of gibberellin metabolism in situ in maize   总被引:6,自引:1,他引:5       下载免费PDF全文
Two forms of spinach acyl carrier protein (ACP-I and ACP-II) have recently been characterized and found to be expressed in a tissue-specific manner (JB Ohlrogge, TM Kuo, 1985 J Biol Chem 260: 8032). To examine possible different functions for these ACP isoforms, we have tested purified preparations of spinach leaf ACP-I and ACP-II and Escherichia coli ACP in several in vitro reactions of fatty acid metabolism. Total de novo fatty acid synthesis and malonyl-CoA:ACP transacylase do not appear to discriminate between acyl carrier protein isoforms. In contrast, the Km of oleoyl-ACP thioesterase for oleoyl-ACP-II is 10-fold higher than for oleoyl-ACP-I, whereas the Km of acyl-ACP glycerol-3-phosphate acyl transferase is 5-fold higher for oleoyl-ACP-I than for oleoyl-ACP-II. A characterization of these reactions and a possible role for ACP isoforms in regulation of fatty acid metabolism in plants are described.  相似文献   

7.
The cultivated peanut is a valuable source of dietary oil and ranks fifth among the world oil crops. Plant fatty acid biosynthesis is catalysed by type II fatty acid synthase (FAS) in plastids and mitochondria. By constructing a full-length cDNA library derived from immature peanut seeds and homology-based cloning, candidate genes of acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, β-ketoacyl-ACP synthase (I, II, III), β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase and enoyl-ACP reductase were isolated. Sequence alignments revealed that primary structures of type II FAS enzymes were highly conserved in higher plants and the catalytic residues were strictly conserved in Escherichia coli and higher plants. Homologue numbers of each type II FAS gene expressing in developing peanut seeds varied from 1 in KASII, KASIII and HD to 5 in ENR. The number of single-nucleotide polymorphisms (SNPs) was quite different in each gene. Peanut type II FAS genes were predicted to target plastids except ACP2 and ACP3. The results suggested that peanut may contain two type II FAS systems in plastids and mitochondria. The type II FAS enzymes in higher plants may have similar functions as those in E. coli.  相似文献   

8.
Malonyl-CoA:acyl-carrier protein transacylase (MCAT), which transfers the malonyl group from malonyl-CoA to holo-acyl carrier protein (ACP), is a key enzyme in fatty acid biosynthesis. Schizochytrium sp. TIO1101 is a marine protist with high levels of docosahexaenoic acid accumulation. In this study, the putative fabD gene coding MCAT was isolated from Schizochytrium sp. TIO1101. The Schizochytrium MCAT gene (ScTIOfabD) contained an 1176 bp open reading frame encoding a protein of 391 amino acids. The ScTIOfabD gene exhibited high novelty in nucleotide and amino acid sequence. The highest amino acid identity was only 35 % between ScTIOMCAT and the reported MCATs. Further studies demonstrated that ScTIOMCAT could bind malonyl-CoA directly and transfer malonyl group from malonyl-CoA to the ACP domain in vitro. Phylogenetic analysis suggested that ScTIOMCAT was relative close to MCATs of yeast strains. Overexpression of ScTIOMCAT in Saccharomyces cereviseae significantly increased the MCAT activity, without negative effects on the growth rate of the host strain. In addition, ScTIOMCAT generated 16.8 and 62 % increase in biomass and fatty acid accumulation, respectively, and did not alter the profile of fatty acid. Our results indicated that the novel MCAT gene from Schizochytrium sp. TIO1101 was crucial for fatty acid synthesis and had potential applications for genetic modifications of oil-producing species.  相似文献   

9.
In previous work (D. Post-Beittenmiller, J.G. Jaworski, J.B. Ohlrogge [1991] J Biol Chem 266: 1858-1865), the in vivo acyl-acyl carrier protein (ACP) pools were measured in spinach (Spinacia oleracea) leaves and changes in their levels were compared to changes in the rates of fatty acid biosynthesis. To further examine the pools of substrates and cofactors for fatty acid biosynthesis and to evaluate metabolic regulation of this pathway, we have now examined the coenzyme A (CoA) and short chain acyl-CoA pools, including acetyl- and malonyl-CoA, in isolated spinach and pea (Pisum sativum) chloroplasts. In addition, the relationships of the acetyl- and malonyl-CoA pools to the acetyl- and malonyl-ACP pools have been evaluated. These studies have led to the following conclusions: (a) Essentially all of the CoA (31-54 μm) in chloroplasts freshly isolated from light-grown spinach leaves or pea seedling was in the form of acetyl-CoA. (b) Chloroplasts contain at least 77% of the total leaf acetyl-CoA, based on comparison of acetyl-CoA levels in chloroplasts and total leaf. (c) CoA-SH was not detected either in freshly isolated chloroplasts or in incubated chloroplasts and is, therefore, less than 2 μm in the stroma. (d) The malonyl-CoA:ACP transacylase reaction is near equilibrium in both light- and dark-incubated chloroplasts, whereas the acetyl-CoA:ACP transacylase reaction is far from equilibrium in light-incubated chloroplasts. However, the acetyl-CoA:ACP transacylase reaction comes nearer to equilibrium when chloroplasts are incubated in the dark. (e) Malonyl-CoA and -ACP could be detected in isolated chloroplasts only during light incubations, and increased with increased rates of fatty acid biosynthesis. In contrast, both acetyl-CoA and acetyl-ACP were detectable in the absence of fatty acid biosynthesis, and acetyl-ACP decreased with increased rates of fatty acid biosynthesis. Together these data have provided direct in situ evidence that acetyl-CoA carboxylase plays a regulatory role in chloroplast fatty acid biosynthesis.  相似文献   

10.
The goal of this research was to develop recombinant Escherichia coli to improve fatty acid synthesis (FAS). Genes encoding acetyl-CoA carboxylase (accA, accB, accC), malonyl-CoA-[acyl-carrier-protein] transacylase (fabD), and acyl-acyl carrier protein thioesterase (EC 3.1.2.14 gene), which are all enzymes that catalyze key steps in the synthesis of fatty acids, were cloned and over-expressed in E. coli MG1655. The acetyl-CoA carboxylase (ACC) enzyme catalyzes the addition of CO2 to acetyl-CoA to generate malonyl-CoA. The enzyme encoded by the fabD gene converts malonyl-CoA to malonyl-[acp], and the EC 3.1.2.14 gene converts fatty acyl-ACP chains to long chain fatty acids. All the genes except for the EC 3.1.2.14 gene were homologous to E. coli genes and were used to improve the enzymatic activities to over-express components of the FAS pathway through metabolic engineering. All recombinant E. coli MG1655 strains containing various gene combinations were developed using the pTrc99A expression vector. To observe changes in metabolism, the in vitro metabolites and fatty acids produced by the recombinants were analyzed. The fatty acids (C16) from recombinant strains were produced 1.23-2.41 times higher than that from the wild type.  相似文献   

11.
《Insect Biochemistry》1986,16(6):887-894
Fatty acid synthetase (FAS) from Drosophila melanogaster was purified by DEAE-cellulose and Sepharose CL-6B chromatography. Inclusion of protease inhibitors in all steps dramatically increased the specific activity of the FAS preparation (to an average value of 4500 U/mg protein, the highest value reported for any animal FAS). The relative molecular weight of the native enzyme was determined by gel filtration and found to be 480,000. SDS gel electrophoresis gave a subunit relative molecular weight of 226,000, indicating that D. melanogaster FAS, like other animal FASs, is a dimer. Acetyl-CoA was the most efficient primer with propionyl-CoA also supporting FAS activity. Neither hexanoyl-CoA butyryl-CoA, isobutyryl-CoA nor isovaleryl-CoA served as efficient primers. D. melanogaster FAS showed an absolute requirement for malonyl-CoA and no activity was observed when methylmalonyl-CoA replaced malonyl-CoA. However, in the presence of both elongating substrates, D. melanogaster FAS synthesized methyl branched fatty acids. Methylmalonyl-CoA appears to behave as a competitive inhibitor in the presence of malonyl-CoA  相似文献   

12.
The acyl-acyl carrier protein synthetase from Escherichia coli has been examined for its ability to specifically acylate acyl carrier protein (ACP) from higher plants in order to develop an assay for plant ACP, and to prepare labeled acyl-ACP of plant origin. It was found that the E. coli enzyme was able to acylate ACP from spinach, soybean, avocado, corn, and several other plants. The acylation was very specific because, in crude extracts of spinach leaves where ACP represented approximately 0.1% of the total soluble protein, ACP was shown to be the only protein acylated. In contrast to other E. coli enzymes that display 2- to 10-fold lower rates with plant versus bacterial ACP, the kinetic constants (Km and Vmax) for acyl-ACP synthetase were found to be essentially identical for spinach and E. coli ACP when acylated with palmitic acid. Palmitic, myristic, lauric, stearic, and oleic acid could all be esterified to both spinach and E. coli ACP with similar specificity. Procedures are described that allow the assay of ACP in plant extracts at the nanogram level.  相似文献   

13.
Posttranslational acylation of several chloroplast proteins with palmitic acid was recently demonstrated in Spirodela oligorrhiza (AK Mattoo, M Edelman [1987] Proc Natl Acad Sci USA 84: 1497-1501). We have now identified an in vivo acylated, soluble protein having an apparent Mr of 10 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as an acylated form of acyl carrier protein (ACP). This 10-kilodalton protein is present in low abundance, and its acylation is light-stimulated. Turnover of the acyl moiety but not the apo-protein is rapid in the light. The acylated 10-kilodalton protein coelectrophoreses with in vitro synthesized palmitoyl-acyl carrier protein and is immunoprecipitated from soluble extracts with an antibody raised against spinach ACP. Cerulenin, an inhibitor of β-ketoacyl-ACP synthetase, inhibited in vivo acylation of Spirodela ACP. Cell-free extracts of Spirodela plants were able to catalyze the transfer of palmitate from palmitoyl-CoA to ACP, suggesting the existence in higher plants of a pathway for acylation of ACP that involves transacylation from acyl-CoA.  相似文献   

14.
Fatty Acid Synthetase of Spinacia oleracea Leaves   总被引:6,自引:4,他引:2       下载免费PDF全文
The molecular organization of fatty acid synthetase system in spinach (Spinacia oleracea L. var. Viroflay) leaves was examined by a procedure similar to that employed for the safflower system (Carthamus tinctorius var. UC-1). The crude extract contained all the component activities (acetyl-CoA:ACP transacylase, malonyl-CoA:ACP transacylase, β-ketoacyl-ACP synthetase, β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase [I]) involved in the synthesis of fatty acids, but enoyl-ACP reductase (II) present in safflower seeds extract could not be detected spectrophotometrically. By polyethylene glycol fractionation followed by several chromatographic procedures, i.e. Sephadex G-200, hydroxyapatite, and blue-agarose, the component enzymes were clearly separated from one another. Properties of β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase, and enoyl-ACP reductase (I) from spinach were compared with the same enzymes in safflower seeds and Escherichia coli.  相似文献   

15.
It was found that the partially purified beta-ketoacyl-ACP synthase of Bacillus insolitus did not require the addition of FabD (malonyl-CoA:ACP transacylase, MAT) for the activity assay. This study therefore examined the necessity of FabD protein for in vitro branched-chain fatty acid (BCFA) biosynthesis by crude fatty acid synthetases (FAS) of Bacilli. To discover the involvement of FabD in the BCFA biosynthesis, the protein was removed from the crude FAS by immunoprecipitation. The His-tag fusion protein FabD of Bacillus subtilis was expressed in Escherichia coli and used for the preparation of antibody. The rabbit antibody raised against the expressed fusion protein specifically recognized the FabD in the crude FAS of B. subtilis. Evaluation of the efficacy of the immunoprecipitation showed that a trace of FabD protein was present in the antibody-treated crude FAS. However, this complete removal of FabD from the crude FAS did not abolish its BCFA biosynthesis, but only reduced the level to 50-60% of the control level for acyl-CoA primer and to 80% for alpha-keto-beta-methylvalerate primer. Furthermore, the FabD concentration did not necessarily correlate with the MAT specific activity in the enzyme fractions, suggesting the presence of another enzyme source of MAT activity. This study, therefore, suggests that FabD is not the sole enzyme source of MAT for in vitro BCFA biosynthesis, and implies the existence of a functional connection between fatty acid biosynthesis and another metabolic pathway.  相似文献   

16.
The nodulation protein NodF of Rhizobium shows 25% identity to acyl carrier protein (ACP) from Escherichia coli (encoded by the gene acpP). However, NodF cannot be functionally replaced by AcpP. We have investigated whether NodF is a substrate for various E. coli enzymes which are involved in the synthesis of fatty acids. NodF is a substrate for the addition of the 4′-phosphopantetheine prosthetic group by holo-ACP synthase. The Km value for NodF is 61?μM, as compared to 2?μM for AcpP. The resulting holo-NodF serves as a substrate for coupling of malonate by malonyl-CoA:ACP transacylase (MCAT) and for coupling of palmitic acid by acyl-ACP synthetase. NodF is not a substrate for β-keto-acyl ACP synthase III (KASIII), which catalyses the initial condensation reaction in fatty acid biosynthesis. A chimeric gene was constructed comprising part of the E.coliacpP gene and part of the nodF gene. Circular dichroism studies of the chimeric AcpP-NodF (residues 1–33 of AcpP fused to amino acids 43–93 of NodF) protein encoded by this gene indicate a similar folding pattern to that of the parental proteins. Enzymatic analysis shows that AcpP-NodF is a substrate for the enzymes holo-ACP synthase, MCAT and acyl-ACP synthetase. Biological complementation studies show that the chimeric AcpP-NodF gene is able functionally to replace NodF in the root nodulation process in Vicia sativa. We therefore conclude that NodF is a specialized acyl carrier protein whose specific features are encoded in the C-terminal region of the protein. The ability to exchange domains between such distantly related proteins without affecting conformation opens exciting possibilities for further mapping of the functional domains of acyl carrier proteins (i. e., their recognition sites for many enzymes).  相似文献   

17.
In this report, concentration of malonic acid and acetic acid produced in Escherichia coli were investigated by the expression of acetyl-CoA carboxylase genes (accs) and a malonyl-CoA:ACP transacylase gene (fabD). Both malonyl-CoA and acetyl-CoA are essential intermediate metabolites in the fatty acid biosynthetic pathway, and are reversibly transformed to malonic acid and acetic acid, respectively in the cell. Acetyl-CoA is converted to malonic-CoA by acetyl-CoA carboxylases (Accs), which are composed of 3 different subunits (AccA, AccB, and AccC), and the resulting malonyl-CoA is then converted to malonyl-[acp] by malonyl-CoA:ACP transacylase (FabD). In this study, these genes were separately cloned, and the influences of overexpression of 4 different genes on the concentration of malonic acid and acetic acid were analyzed. Compared with the wild type E. coli, a recombinant strain containing 3 acc genes together showed a 41.03% enhanced malonic acid production, and a 4.29-fold increased ratio of malonic acid to acetic acid.  相似文献   

18.
The activity of fatty acid synthetase (FAS) from Vibrio sp. strain ABE-1 required the presence of acyl carrier protein and was completely inhibited by thiolactomycin, an inhibitor specific for a type II FAS. These observations indicate that this enzyme is a type II FAS. Analysis by gas-liquid chromotography of the reaction products synthesized in vitro from [2-14C]malonyl-CoA by the partially purified FAS revealed, in addition to 16-and 18-carbon fatty acids which are normal constituents of this bacterium, the presence of fatty acids with very long chains. These fatty acids were identified as saturated and mono-unsaturated fatty acids with 20 up to as many as 30 carbon atoms. The longest fatty acids normally found in this bacterium contain 18-carbon atoms. These results suggest that the FAS from Vibrio sp. strain ABE-1 has potentially the ability to synthesize fatty acids with very long chains.Abbreviations ACP acyl carrier protein - FAME fatty acid methyl ester - FAS fatty acid synthetase - FID flame ionization detection - GLC gas-liquid chromatography - TLC thin-layer chromatography - In designations of fatty acids, such as 16:0, 16:1, etc the colon separates the number that denotes the number of carbon atoms and the number that denotes the number of double bonds, respectively, in the molecule - 16:0-CoA CoA ester of 16:0  相似文献   

19.
To investigate the role of acyl carrier protein (ACP) in determining the fate of the acyl moieties linked to it in the course of de-novo fatty acid biosynthesis in higher plants, we carried out in vitro experiments to reconstitute the fatty acid synthase (FAS) reaction in extracts of spinach (Spinaciaoleracea L.) leaves, rape (Brassicanapus L.) seeds and Cuphea lanceolata Ait. seeds. The action of two major C. lanceolata ACP isoforms (ACP 1 and ACP 2) compared to ACP from Escherichia coli was monitored by saponification of the corresponding FAS products with subsequent analysis of the liberated fatty acids by high-performance liquid chromatography. In a second approach the preference of the medium-chain acyl-ACP-specific thioesterase (EC 3.1.2.14) of C. lanceolata seeds for the hydrolysis of acyl-ACPs prepared from the three ACP types was investigated. Both ACP isoforms from C. lanceolata seeds supported the synthesis of medium-chain fatty acids in a reconstituted FAS reaction of spinach leaf extracts. Compared to the isoform ACP 1, ACP 2 was more effective in supporting the synthesis of such fatty acids in the FAS reaction of rape seed extracts and caused a higher accumulation of FAS products in all experiments. No preference of the medium-chain thioesterase for one specific ACP isoform was observed. The results indicate that the presence of ACP 2 is essential for the synthesis of decanoic acid in C. lanceolata seeds, and its expression in the phase of accumulation of high levels of this fatty acid provides an additional and highly efficient cofactor for stimulating the FAS reaction. Received: 23 June 1997 / Accepted: 23 October 1997  相似文献   

20.
Acetyl-CoA carboxylase from the diatom Cyclotella cryptica has been purified to near homogeneity by the use of ammonium sulfate fractionation, gel filtration chromatography, and affinity chromatography with monomeric avidin-agarose. The specific activity of the final preparation was as high as 14.6 micromoles malonyl-CoA formed per milligram protein per minute, indicating a 600-fold purification. Native acetyl-CoA carboxylase has a molecular weight of approximately 740 kilodaltons and appears to be composed of four identical biotin-containing subunits. The enzyme has maximal activity at pH 8.2, but enzyme stability is greater at pH 6.5. Km values for MgATP, acetyl-CoA, and HCO3- were determined to be 65, 233, and 750 micromolar, respectively. The purified enzyme is strongly inhibited by palmitoyl-CoA, and is inhibited to a lesser extent by malonyl-CoA, ADP, and phosphate. Pyruvate stimulates enzymatic activity to a slight extent. Acetyl-CoA carboxylase from Cyclotella cryptica is not inhibited by cyclohexanedione or aryloxyphenoxypropionic acid herbicides as strongly as monocot acetyl-CoA carboxylases; 50% and 0% inhibition was observed in the presence of 23 micromolar clethodim and 100 micromolar haloxyfop, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号