首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of experiments at several levels of relative humidity and radiation dose rates was carried out using spores of Bacillus subtilis var. niger to evaluate the effect of heat alone, radiation alone, and a combination of heat and radiation. Combined heat and radiation treatment of microorganisms yields a destruction rate greater than the additive rates of the independence agents. The synergistic mechanism shows a proportional dependency on radiation dose rate an Arrhenius dependency on temperature, and a dependency on relative humidity. Maximum synergism occurs under conditions where heat and radiation individually destroy microorganisms at approximately equal rates. Larger synergistic advantage is possible at low relative humidities rather than at high relative humidities.  相似文献   

2.
Effect of combined heat and radiation on microbial destruction.   总被引:1,自引:1,他引:0       下载免费PDF全文
A series of experiments at several levels of relative humidity and radiation dose rates was carried out using spores of Bacillus subtilis var. niger to evaluate the effect of heat alone, radiation alone, and a combination of heat and radiation. Combined heat and radiation treatment of microorganisms yields a destruction rate greater than the additive rates of the independence agents. The synergistic mechanism shows a proportional dependency on radiation dose rate an Arrhenius dependency on temperature, and a dependency on relative humidity. Maximum synergism occurs under conditions where heat and radiation individually destroy microorganisms at approximately equal rates. Larger synergistic advantage is possible at low relative humidities rather than at high relative humidities.  相似文献   

3.
This paper presents the analysis of a combined environment of dry heat and gamma radiation when applied for the purpose of spacecraft sterilization. The nature of the synergistic inactivation effect of dry heat and radiation on bacterial spores is explained using a semiempirical mathematical model, and the dependence of the inactivation rate upon a temperature dependent, nonlinear function of radiation dose rate is presented. An analysis of the temperature required for a defined population reduction with a defined upper limit on radiation dose and time is described. Also discussed is the dependency of the dose required for a defined population reduction on the radiation dose rate at any selected temperature.  相似文献   

4.
A study was made of the effect of alternating magnetic field (AMF) and ionizing radiation delivered separately or in a combination on the microorganisms differing in radio-resistance. AMF (240 and 750 E) had no pronounced bactericidal action. A synergistic increase in the sterilizing effect of ionizing radiation was demonstrated after incubation of irradiated bacteria in AMF. The radiation-magnetic technique is proposed for sterilization of preparations and articles made of non-thermoresistant materials which permits to decrease by 1.5 times the bactericidal dose of ionizing radiation.  相似文献   

5.
The relationship of ionizing radiation to the age-related ophthalmological findings of the 1978-1980 ophthalmological examination of A-bomb survivors of Hiroshima and Nagasaki has been reanalyzed using DS86 eye organ dose estimates. The main purpose of this reevaluation was to determine whether age and radiation exposure, as measured using the recently revised dosimetry information (DS86), have an additive, synergistic, or antagonistic effect. The data in this study are limited to axial opacities and posterior subcapsular changes, for which a definite radiation-induced effect has been observed in Hiroshima and Nagasaki A-bomb survivors. The best model fitting for axial opacities gives a significant positive effect for both linear dose and linear age-related regression coefficients and a significant negative effect for an interaction between radiation dose and age. Such a negative interaction implies an antagonistic effect in that the relative risks in relation to radiation exposure doses become smaller with an increase in age. On the other hand, the best-fitting relationship for posterior subcapsular changes suggested a linear-quadratic dose and linear age-related effect. The estimate of the quadratic dose coefficient shows a highly negative correlation with age, but the negative quadratic dose term is extremely small and is of little biological significance.  相似文献   

6.
Experimental determinations were made of cell number as a function of time for two strains of L5178Y mammalian cells maintained continuously in various environments of radiation. One strain possessed a shoulder in its dose response curve whereas the other did not. Neither strain showed any significant difference in growth rate for interdivision doses on the order of the median lethal dose or less delivered continuously at a low dose rate or pulsed every 4 h at a high instantaneous dose rate. It was also shown that large numbers of dead cells have little effect on growth rate and that these dead cells last as discrete entities for many days. A simple theory of growth rate in the presence of radiation is presented, and the agreement with the observations implies that there is no effect of any sublethal low dose rate radiation received in one generation on the growth rate or radiation sensitivity of the succeeding generation. Further analysis of the data also showed that for the no-shoulder cells at 37 degrees C, tritiated water had a relative biological effect close to unity for cell sterilization.  相似文献   

7.
Samples of soil collected from the Kennedy Space Center near the spacecraft assembly facilities were found to contain microorganisms very resistant to conventional sterilzation techniques. The inactivation kinetics of the naturally occurring spores in soil were investigated by using dry heat and ionizing radiation, first separately and then simultaneously. Dry-heat inactivation kinetics of spores was determined at 105 and 125 C; radiation inactivation kinetics was determined for dose rates of 660 and 76 krads/h at 25 C. Simultaneous combinations of heat and radiation were then investigated at 105, 110, 115, 120, and 125 C, with a dose rate of 76 krads/h. Combined treatment was found to be highly synergistic, requiring greatly reduced radiation doses to accomplish sterilization of the population.  相似文献   

8.
光复活对紫外线照射大肠杆菌后突变率的影响   总被引:1,自引:1,他引:0  
通过改变UV照射时间、照射后的操作速度、光复活时的温度、时间和光强度,以光复活和暗处理后细胞存活数的比值为依据,研究了不同条件下E.coli受UV照射后的光复活效应。并以E.coli对5μg/ml链霉素抗性突变率为指标,比较了不同剂量UV照射后光复活和暗处理对E.coli突变率的影响。结果表明:光复活效应在温度10℃时最明显,且与照射时间、照射后的操作速度、光复活时间和光强度成正相关;在中、低剂量UV照射后,暗处理较光复活后E.coli对链霉素抗性突变率明显高,而在高剂量下,光复活则显著高于暗处理后的突变率。  相似文献   

9.
10.
In experiments with wild-type diploid yeast cells of Saccharomyces cerevisiae it was shown that the definite temperature interval revealed the synergistic effect under simultaneous action of UV radiation and hyperthermia. The correlation between the degree of synergistic interaction and UV light intensity and irradiation temperature was estimated: the temperature interval synergistically enhancing the UV light effect was shifted towards higher temperatures as the UV light intensity was increasing, the optimal temperature to achieve the most synergistic effect existing for every intensity examined.  相似文献   

11.
Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon X irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 degrees C/15 min) given prior to radiation does not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 degrees C. The DNA-protein crosslinks produced by 50-Gy X ray alone are removed after 2 hr at 37 degrees C. However, if hyperthermia (43 degrees C/15 min) is given prior to 100-Gy X ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding. These data suggest that the synergistic action on hyperthermia with radiation is more related to the rate of removal and the type of chemical bonding involved in the covalent DNA-protein crosslinks rather than the amount of DNA-protein crosslinks.  相似文献   

12.
In studying the combined effect of single and fractionated exposure to gamma/neutron radiation (12.5-50 cGy) and sodium nitrite (100 mg/kg) and chronic irradiation with a mixture of radiation (25 cGy) and sodium nitrite, nitrate (10-100 mg/l) the synergistic effect was observed in inducing reciprocal translocations in mouse spermatocytes. The dose-response function of the reciprocal translocations occurrence in Af mouse spermatocytes was nonlinear; there was a "plateau" within the dose range from 25 to 50 cGy.  相似文献   

13.
Summary A method which allows growth of normal human tissue to be studied in vitro is used to investigate possible interactive effects of radiation and environmentally important carcinogens on oesophageal and urothelial cell growth. Carcinogens chosen were selected for their known or suspected effect on the oesophageal mucosa or urothelium in vivo. The results indicate that with carcinogens alone concentrations can be identified that result in increased proliferation of cells. With radiation alone inhibition of cell proliferation occurs at all dose points examined. However, at precise combinations of radiation and carcinogen, greatly enhanced cell proliferation could be detected, suggesting a synergistic interaction between the two agents. The results may have implications for the design and interpretation of experiments aimed at elucidating early or premalignant changes in epithelial tissues and may indicate hitherto unsuspected interactions between radiation and environmentally important carcinogens.  相似文献   

14.
The effects of ultraviolet-A (UV-A, lambdam = 365 nm) and orange-red light (lambdam = 625 nm) on the attachment and proliferation of embryonic skin-muscle rat fibroblasts were investigated. It was found that orange-red light (ORL) produces both the stimulatory and inhibitory actions on the attachment and proliferation of fibroblasts, whereas UV-A radiation caused only the inhibition of the processes. Upon consecutive irradiation in both variants: ORL --> UV and UV --> ORL, the synergistic effect of the inhibitory action in both spectral regions was observed. Conversely, upon simultaneous irradiation with ORL (dose 3.6 J/cm2) and UV-A (dose 1.8 J/cm2), the inhibitory effect of ORL and UV-A weakened. Possible mechanisms of the effects are analyzed.  相似文献   

15.
16.
Tow types of dose-rate effect that alter the survival response of haploid yeast cells to 8-methoxypsoralen (8-MOP) plus treatment with irradiation at 365 nm were studied. (1) When the concentration of 8-MOP was varied between 9.2 X 10(-5) and 2.3 X 10(-8) M and the dose rate of 365-nm irradiation kept constant, the efficiency of the irradiation for killing increased relatively to that of 8-MOP whe the concentration of 8-MOP decreased. This indicated that there was no strict reciprocity between radiation dose and concentration of drug. (2) When the dose rate of radiation was varied between 0.66 X 10(3) and 108 X 10(3) J m-2 h-1 and the concentration of 8-MOP was kept constant, the survival of wild-type cells increased strikingly at low dose rates of radiation as compared with high dose rates. Cells responded more to changes at low dose rates than to equal changes a high dose rates. The high resistance of wild-type cells to 8-MOP plus radiation delivered at low dose rates absent from rad 1-3 cells defective in excision-repair. This suggests that the dose-rate effect seen in wild-type cells depended at least in part on an active excision-repair function. At low dose rates of radiation, the shoulder of the survival curve for rad1-3 cells, i.e. the ability to accumulate sub-lethal damage, was increased by a factor of about 2 when compared with that seen at a high dose rate. Thus it is likely that at low dose rates a repair function other than excision-resynthesis may operate in rad1-3 cells.  相似文献   

17.
The adaptive response is an important phenomenon in radiobiology. A study of the conditions essential for the induction of an adaptive response is of critical importance to understanding the novel biological defense mechanisms against the hazardous effects of radiation. In our previous studies, the specific dose and timing of radiation for induction of an adaptive response were studied in ICR mouse fetuses. We found that exposure of the fetuses on embryonic day 11 to a priming dose of 0.3 Gy significantly suppressed prenatal death and malformation induced by a challenging dose of radiation on embryonic day 12. Since a significant dose-rate effect has been observed in a variety of radiobiological phenomena, the effect of dose rate on the effectiveness of induction of an adaptive response by a priming dose of 0.3 Gy administered to fetuses on embryonic day 11 was investigated over the range from 0.06 to 5.0 Gy/min. The occurrence of apoptosis in limb buds, incidences of prenatal death and digital defects, and postnatal mortality induced by a challenging dose of 3.5 Gy given at 1.8 Gy/min to the fetuses on embryonic day 12 were the biological end points examined. Unexpectedly, effective induction of an adaptive response was observed within two dose-rate ranges for the same dose of priming radiation, from 0.18 to 0.98 Gy/ min and from 3.5 to 4.6 Gy/min, for reduction of the detrimental effect induced by a challenging dose of 3.5 Gy. In contrast, when the priming irradiation was delivered at a dose rate outside these two ranges, no protective effect was observed, and at some dose rates elevation of detrimental effects was observed. In general, neither a normal nor a reverse dose- rate effect was found in the dose-rate range tested. These results clearly indicated that the dose rate at which the priming irradiation was delivered played a crucial role in the induction of an adaptive response. This paper provides the first evidence for the existence of two dose-rate ranges for the same dose of priming radiation to successfully induce an adaptive response in mouse fetuses.  相似文献   

18.
BackgroundAnalysis of the survival rate of cells after irradiation with a specified dose of X-radiation might be one of the basic foundations for assessment of biological implications of ionizing radiation. Investigation of the influence of X-radiation dose rate on cells was carried out in vitro using the SF2 test.AimThe aim of this study was to investigate the influence of X-radiation dose rate on the surviving fraction of the K-562 cell line for two photon energies of 6 MV and 20 MV.Materials/MethodsTo measure the cells' reaction to X-radiation of variable dose rate human leukaemic K-562 cells were used. In order to fulfil the main aim of the study, the cell line was subjected to irradiation at two different dose rates. Total dose applied at once was 2 Gy. A quantitative evaluation of cell survival rate was carried out at every step of the experiment using a clonogenic assay.ResultsHigh dose rate at the energy of 6 MV decreased the percentage of surviving cells to 23%, while lower dose rate decreased it only to 36%. A similar effect is observed at the energy of 20MV-namely at the higher dose rate the percentage of surviving cells is 18%, whereas at the lower one it is only 34%.ConclusionsThe experiment has shown that when using a lower dose rate, the biological effect of ionizing radiation is less pronounced. However, at a higher dose rate higher radiosensitivity of cells is observed.  相似文献   

19.
The combined effect of radiation and caffeine has been studied in mouse embryos. Radiation and/or caffeine were administered to ICR mice on Day 11 of gestation. Intrauterine death, gross malformation, and fetal body weight were selected as indicators of effects. Doses of whole-body gamma irradiation were 0.5 to 2.5 Gy and those of caffeine were 100 and 250 mg/kg maternal body wt. Intrauterine mortality increased with increasing radiation dose; this trend was more remarkable in combination with caffeine. Gross malformations such as cleft palate and defects of forelegs and hindlegs appeared frequently in the fetuses treated with both radiation and caffeine. Decreased fetal weight was observed even in mice treated with 0.5 Gy of radiation or 100 mg/kg caffeine. There was a linear relationship between dose and reduction of fetal weight. The fetal weight was a sensitive, precise, and easy-to-handle indicator for the effects of growth retardation. Intrauterine mortality and frequencies of cleft palate and defects of forelegs and hindlegs were higher than the sum of those induced by radiation and by caffeine separately. The results indicated that the combined action of radiation and caffeine on intrauterine death and malformations was synergistic.  相似文献   

20.
Different types of ionizing radiation produce different dependences of cancer risk on radiation dose/dose rate. Sparsely ionizing radiation (e.g. γ-rays) generally produces linear or upwardly curving dose responses at low doses, and the risk decreases when the dose rate is reduced (direct dose rate effect). Densely ionizing radiation (e.g. neutrons) often produces downwardly curving dose responses, where the risk initially grows with dose, but eventually stabilizes or decreases. When the dose rate is reduced, the risk increases (inverse dose rate effect). These qualitative differences suggest qualitative differences in carcinogenesis mechanisms. We hypothesize that the dominant mechanism for induction of many solid cancers by sparsely ionizing radiation is initiation of stem cells to a pre-malignant state, but for densely ionizing radiation the dominant mechanism is radiation-bystander-effect mediated promotion of already pre-malignant cell clone growth. Here we present a mathematical model based on these assumptions and test it using data on the incidence of dysplastic growths and tumors in the mammary glands of mice exposed to high or low dose rates of γ-rays and neutrons, either with or without pre-treatment with the chemical carcinogen 7,12-dimethylbenz-alpha-anthracene (DMBA). The model provides a mechanistic and quantitative explanation which is consistent with the data and may provide useful insight into human carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号