共查询到20条相似文献,搜索用时 0 毫秒
1.
García-Higuera I Manchado E Dubus P Cañamero M Méndez J Moreno S Malumbres M 《Nature cell biology》2008,10(7):802-811
The anaphase promoting complex or cyclosome (APC/C) is a ubiquitin protein ligase that, together with Cdc20 or Cdh1, targets cell-cycle proteins for degradation. APC/C-Cdh1 specifically promotes protein degradation in late mitosis and G1. Mutant embryos lacking Cdh1 die at E9.5-E10.5 due to defects in the endoreduplication of trophoblast cells and placental malfunction. This lethality is prevented when Cdh1 is expressed in the placenta. Cdh1-deficient cells proliferate inefficiently and accumulate numeric and structural chromosomal aberrations, indicating that Cdh1 contributes to the maintenance of genomic stability. Cdh1 heterozygous animals show increased susceptibility to spontaneous tumours, suggesting that Cdh1 functions as a haploinsufficient tumour suppressor. These heterozygous mice also show several defects in behaviour associated with increased proliferation of stem cells in the nervous system. These results indicate that Cdh1 is required for preventing unscheduled proliferation of specific progenitor cells and protecting mammalian cells from genomic instability. 相似文献
2.
《Cell cycle (Georgetown, Tex.)》2013,12(10):1278-1284
by activating a large ubiquitin ligase called the anaphase-promoting complex, or cyclosome (APC/C). At the end of G1, APC/CCdh1 is inhibited by cyclin-dependent kinase (CDK) phosphorylation of Cdh1. The specific Cdh1 phosphorylation sites used to regulate APC/CCdh1 activity have not been directly identified. Here, we used a mass spectrometric approach to identify the in vivo phosphorylation sites on yeast Cdh1. Surprisingly, in addition to several expected CDK phosphorylation sites, we discovered numerous non-CDK phosphorylation sites. In total, at least 19 serine and threonine residues on Cdh1 are phosphorylated in vivo. Seventeen of these sites are located in the N-terminal half of Cdh1, outside the highly conserved WD40 repeats. The pattern of phosphorylation was the same when Cdh1 was purified from yeast cultures arrested in S, early M and late M. Mutation of CDK consensus sequences eliminated detectable phosphorylation at many of the non-CDK sites. In contrast, mutation of non-CDK sites had no significant effect on CDK phosphorylation. We conclude that phosphorylation of CDK sites promotes the subsequent recognition of Cdh1 by at least one additional kinase. The function of non-CDK phosphorylation may differ from CDK phosphorylation because mutation of non-CDK sites did not result in constitutive activation of APC and consequent cell cycle arrest. These results suggest that phosphoregulation of APC/CCdh1 activity is much more complex than previously thought. 相似文献
3.
Cell cycle-dependent nuclear export of Cdh1p may contribute to the inactivation of APC/C(Cdh1) 下载免费PDF全文
Cdh1p is a substrate-specific subunit of the anaphase-promoting complex (APC/C), which functions as an E3 ubiquitin ligase to degrade the mitotic cyclin Clb2p and other substrates during the G(1) phase of the cell cycle. Cdh1p is phosphorylated and thereby inactivated at the G(1)/S transition predominantly by Cdc28p-Clb5p. Here we show that Cdh1p is nuclear during the G(1) phase of the cell cycle, but redistributes to the cytoplasm between S phase and the end of mitosis. Nuclear export of Cdh1p is regulated by phosphorylation and requires active Cdc28p kinase. Cdh1p binds to the importin Pse1p and the exportin Msn5p, which is necessary and sufficient to promote efficient export of Cdh1p in vivo. Although msn5delta cells are viable, they are sensitive to Cdh1p overexpression. Likewise, a mutant form of Cdh1p, which is constitutively nuclear, prevents accumulation of Clb2p and leads to cell cycle arrest when overexpressed in wild-type cells. Taken together, these results suggest that phosphorylation-dependent nuclear export of Cdh1p by Msn5p contributes to efficient inactivation of APC/C(Cdh1). 相似文献
4.
5.
Olga Nagy Margit Pál Andor Udvardy Christine AM Shirras Imre Boros Alan D Shirras Péter Deák 《Cell division》2012,7(1):1-15
Background
The spindle assembly checkpoint (SAC) inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons.Results
Here we describe mitotic slippage in yeast bub2?? mutant cells that are defective in the repression of precocious telophase onset (mitotic exit). Precocious activation of anaphase promoting complex/cyclosome (APC/C)-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-chromatid separation and chromosome missegregation), in addition to telophase onset (mitotic exit), during mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments.Conclusions
The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase) causes mitotic slippage in SAC-activated cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor therapy with mitotic spindle poisons in humans. 相似文献6.
Hideaki Naoe Tatsuyuki Chiyoda Jo Ishizawa Kenta Masuda Hideyuki Saya Shinji Kuninaka 《Biochemical and biophysical research communications》2013,430(2):757-762
Differentiation of placental trophoblast stem (TS) cells to trophoblast giant (TG) cells is accompanied by transition from a mitotic cell cycle to an endocycle. Here, we report that Cdh1, a regulator of the anaphase-promoting complex/cyclosome (APC/C), negatively regulates mitotic entry upon the mitotic/endocycle transition. TS cells derived from homozygous Cdh1 gene-trapped (Cdh1GT/GT) murine embryos accumulated mitotic cyclins and precociously entered mitosis after induction of TS cell differentiation, indicating that Cdh1 is required for the switch from mitosis to the endocycle. Furthermore, the Cdh1GT/GT TS cells and placenta showed aberrant expression of placental differentiation markers. These data highlight an important role of Cdh1 in the G2/M transition during placental differentiation. 相似文献
7.
Oelschlaegel T Schwickart M Matos J Bogdanova A Camasses A Havlis J Shevchenko A Zachariae W 《Cell》2005,120(6):773-788
Cohesion established between sister chromatids during pre-meiotic DNA replication mediates two rounds of chromosome segregation. The first division is preceded by an extended prophase wherein homologous chromosomes undergo recombination. The persistence of cohesion during prophase is essential for recombination and both meiotic divisions. Here we show that Mnd2, a subunit of the anaphase-promoting complex (APC/C) from budding yeast, is essential to prevent premature destruction of cohesion in meiosis. During S- and prophase, Mnd2 prevents activation of the APC/C by a meiosis-specific activator called Ama1. In cells lacking Mnd2 the APC/C-Ama1 enzyme triggers degradation of Pds1, which causes premature sister chromatid separation due to unrestrained separase activity. In vitro, Mnd2 inhibits ubiquitination of Pds1 by APC/C-Ama1 but not by other APC/C holo-enzymes. We conclude that chromosome segregation in meiosis depends on the selective inhibition of a meiosis-specific form of the APC/C. 相似文献
8.
9.
Jia Liu Qinyu Yao Lei Xiao Fan Li Wen Ma Zihui Zhang Xinya Xie Chunmiao Yang Qi Cui Ying Tian Chao Zhang Baochang Lai Nanping Wang 《Journal of cellular physiology》2020,235(3):2521-2531
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a member of the immunoglobulin superfamily and is expressed by hematopoietic and endothelial cells (ECs). Recent studies have shown that PECAM-1 plays a crucial role in promoting the development of the EC inflammatory response in the context of disturbed flow. However, the mechanistic pathways that control PECAM-1 protein stability remain largely unclear. Here, we identified PECAM-1 as a novel substrate of the APC/Cdh1 E3 ubiquitin ligase. Specifically, lentivirus-mediated Cdh1 depletion stabilized PECAM-1 in ECs. Conversely, overexpression of Cdh1 destabilized PECAM-1. The proteasome inhibitor MG132 blocked Cdh1-mediated PECAM-1 degradation. In addition, Cdh1 promoted K48-linked polyubiquitination of PECAM-1 in a destruction box-dependent manner. Furthermore, we demonstrated that compared with pulsatile shear stress (PS), oscillatory shear stress decreased the expression of Cdh1 and the ubiquitination of PECAM-1, therefore stabilizing PECAM-1 to promote inflammation in ECs. Hence, our study revealed a novel mechanism by which fluid flow patterns regulate EC homeostasis via Cdh1-dependent ubiquitination and subsequent degradation of PECAM-1. 相似文献
10.
Activation of Cdh1-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. 总被引:7,自引:0,他引:7 下载免费PDF全文
Anaphase-promoting complex (APC) is activated by two regulatory proteins, Cdc20 and Cdh1. In yeast and Drosophila, Cdh1-dependent APC (Cdh1-APC) activity targets mitotic cyclins from the end of mitosis to the G1 phase. To investigate the function of Cdh1 in vertebrate cells, we generated clones of chicken DT40 cells disrupted in their Cdh1 loci. Cdh1 was dispensable for viability and cell cycle progression. However, similarly to yeast and Drosophila, loss of Cdh1 induced unscheduled accumulation of mitotic cyclins in G1, resulting in abrogation of G1 arrest caused by treatment with rapamycin, an inducer of p27(Kip1). Further more, we found that Cdh1(-/-) cells fail to maintain DNA damage-induced G2 arrest and that Cdh1-APC is activated by X-irradiation-induced DNA damage. Thus, activation of Cdh1-APC plays a crucial role in both cdk inhibitor-dependent G1 arrest and DNA damage-induced G2 arrest. 相似文献
11.
Activation of the anaphase-promoting complex/cyclosome (APC/C) by Cdc20 and Cdh1 leads to ubiquitin-dependent degradation of securin and cyclin B and thereby promotes the initiation of anaphase and exit from mitosis. Cyclin B and securin ubiquitination depend on a destruction box (D box) sequence in these proteins, but how APC/C bound to Cdc20 or Cdh1 recognizes the D box is poorly understood. By using site-specific photocrosslinking in combination with mutational analyses, we show that the D box directly interacts with an evolutionarily conserved surface on the predicted WD40 propeller structure of Cdh1 and that this interaction is essential for processive substrate ubiquitination. We further show that Cdh1 specifically crosslinks to the APC/C subunit Cdc27 and that Cdh1 binding to APC/C depends on the presence of Cdc27. Our data imply that APC/C is activated by the association of Cdh1 with Cdc27, which enables APC/C to recognize the D box of substrates via Cdh1's propeller domain. 相似文献
12.
The anaphase‐promoting complex/cyclosome (APC/C), a multi‐subunit ubiquitin ligase essential for cell cycle control, is regulated by reversible phosphorylation. APC/C phosphorylation by cyclin‐dependent kinase 1 (Cdk1) promotes Cdc20 co‐activator loading in mitosis to form active APC/C‐Cdc20. However, detailed phospho‐regulation of APC/C dynamics through other kinases and phosphatases is still poorly understood. Here, we show that an interplay between polo‐like kinase (Plx1) and PP2A‐B56 phosphatase on a flexible loop domain of the subunit Apc1 (Apc1‐loop500) controls APC/C activity and mitotic progression. Plx1 directly binds to the Apc1‐loop500 in a phosphorylation‐dependent manner and promotes the formation of APC/C‐Cdc20 via Apc3 phosphorylation. Upon phosphorylation of loop residue T532, PP2A‐B56 is recruited to the Apc1‐loop500 and differentially promotes dissociation of Plx1 and PP2A‐B56 through dephosphorylation of Plx1‐binding sites. Stable Plx1 binding, which prevents PP2A‐B56 recruitment, prematurely activates the APC/C and delays APC/C dephosphorylation during mitotic exit. Furthermore, the phosphorylation status of the Apc1‐loop500 is controlled by distant Apc3‐loop phosphorylation. Our study suggests that phosphorylation‐dependent feedback regulation through flexible loop domains within a macromolecular complex coordinates the activity and dynamics of the APC/C during the cell cycle. 相似文献
13.
Takahashi A Imai Y Yamakoshi K Kuninaka S Ohtani N Yoshimoto S Hori S Tachibana M Anderton E Takeuchi T Shinkai Y Peters G Saya H Hara E 《Molecular cell》2012,45(1):123-131
Both the DNA damage response (DDR) and epigenetic mechanisms play key roles in the implementation of senescent phenotypes, but very little is known about how these two mechanisms are integrated to establish senescence-associated gene expression. Here we show that, in senescent cells, the DDR induces proteasomal degradation of G9a and GLP, major histone H3K9 mono- and dimethyltransferases, through Cdc14B- and p21(Waf1/Cip1)-dependent activation of APC/C(Cdh1) ubiquitin ligase, thereby causing a global decrease in H3K9 dimethylation, an epigenetic mark for euchromatic gene silencing. Interestingly, induction of IL-6 and IL-8, major players of the senescence-associated secretory phenotype (SASP), correlated with a decline of H3K9 dimethylation around the respective gene promoters and knockdown of Cdh1 abolished IL-6/IL-8 expression in senescent cells, suggesting that the APC/C(Cdh1)-G9a/GLP axis plays crucial roles in aspects of senescent phenotype. These findings establish a role for APC/C(Cdh1) and reveal how the DDR integrates with epigenetic processes to induce senescence-associated gene expression. 相似文献
14.
15.
APC/C(Cdh1)-mediated degradation of the F-box protein NIPA is regulated by its association with Skp1
Klitzing Cv Huss R Illert AL Fröschl A Wötzel S Peschel C Bassermann F Duyster J 《PloS one》2011,6(12):e28998
NIPA (Nuclear Interaction Partner of Alk kinase) is an F-box like protein that targets nuclear Cyclin B1 for degradation. Integrity and therefore activity of the SCF(NIPA) E3 ligase is regulated by cell-cycle-dependent phosphorylation of NIPA, restricting substrate ubiquitination to interphase. Here we show that phosphorylated NIPA is degraded in late mitosis in an APC/C(Cdh1)-dependent manner. Binding of the unphosphorylated form of NIPA to Skp1 interferes with binding to the APC/C-adaptor protein Cdh1 and therefore protects unphosphorylated NIPA from degradation in interphase. Our data thus define a novel mode of regulating APC/C-mediated ubiquitination. 相似文献
16.
Proliferating cells have a higher metabolic rate than quiescent cells. To investigate the role of metabolism in cell cycle progression, we examined cell size, mitochondrial mass, and reactive oxygen species (ROS) levels in highly synchronized cell populations progressing from early G1 to S phase. We found that ROS steadily increased, compared to cell size and mitochondrial mass, through the cell cycle. Since ROS has been shown to influence cell proliferation and transformation, we hypothesized that ROS could contribute to cell cycle progression. Antioxidant treatment of cells induced a late-G1-phase cell cycle arrest characterized by continued cellular growth, active cyclin D-Cdk4/6 and active cyclin E-Cdk2 kinases, and inactive hyperphosphorylated pRb. However, antioxidant-treated cells failed to accumulate cyclin A protein, a requisite step for initiation of DNA synthesis. Further examination revealed that cyclin A continued to be ubiquitinated by the anaphase promoting complex (APC) and to be degraded by the proteasome. This antioxidant arrest could be rescued by overexpression of Emi1, an APC inhibitor. These observations reveal an intrinsic late-G1-phase checkpoint, after transition across the growth factor-dependent G1 restriction point, that links increased steady-state levels of endogenous ROS and cell cycle progression through continued activity of APC in association with Cdh1. 相似文献
17.
Xiao-Bin Lv Fangyun Xie Kaishun Hu Yuanzhong Wu Lin-Lin Cao Xia Han Yi Sang Yi-Xin Zeng Tiebang Kang 《The Journal of biological chemistry》2010,285(24):18234-18240
APC/CCdh1 plays a key role in mitotic exit and has essential targets in the G1 phase; however, these mechanisms are poorly understood. In this report, we provide evidence that damaged DNA-binding protein 1 (DDB1) is capable of binding the WD40 domains of Cdh1, but not of Cdc20, through its BPA and BPC domains. Moreover, cells lacking DDB1 exhibit markedly elevated levels of the protein substrates of APC/CCdh1. Depletion of DDB1 in mitotic cells significantly delays mitotic exit, which demonstrates that the interaction between DDB1 and Cdh1 plays a critical role in regulating APC/CCdh1 activity. However, cells depleted of Cdh1 demonstrated no change in the UV-induced degradation of Cdt1, the main function of DDB1 as an E3 ligase. Strikingly, the APC/CCdh1 substrate levels are normal in cell knockdowns of Cul4A and Cul4B, which, along with DDB1, form an E3 ligase complex. This finding indicates that DDB1 modulates the function of APC/CCdh1 in a manner independent on the Cul4-DDB1 complex. Our results suggest that DDB1 may functionally regulate mitotic exit by modulating APC/CCdh1 activity. This study reveals that there may be cross-talk among DDB1, Cdh1, and Skp2 in the control of cell cycle division. 相似文献
18.
Cdh1-APC/C, cyclin B-Cdc2, and Alzheimer's disease pathology 总被引:1,自引:0,他引:1
The anaphase-promoting complex/cyclosome (APC/C) is a key E3 ubiquitin ligase complex that functions in regulating cell cycle transitions in proliferating cells and has, as revealed recently, novel roles in postmitotic neurons. Regulated by its activator Cdh1 (or Hct1), whose level is high in postmitotic neurons, APC/C seems to have multiple functions at different cellular locations, modulating diverse processes such as synaptic development and axonal growth. These processes do not, however, appear to be directly connected to cell cycle regulation. It is now shown that Cdh1-APC/C activity may also have a basic role in suppressing cyclin B levels, thus preventing terminally differentiated neurons from aberrantly re-entering the cell cycle. The result of an aberrant cyclin B-induced S-phase entry, at least for some of these neurons, would be death via apoptosis. Cdh1 thus play an active role in maintaining the terminally differentiated, non-cycling state of postmitotic neurons--a function that could become impaired in Alzheimer's and other neurodegenerative diseases. 相似文献
19.
Budding yeast RSI1/APC2, a novel gene necessary for initiation of anaphase, encodes an APC subunit. 总被引:7,自引:1,他引:7 下载免费PDF全文
SIC1 is a non-essential gene encoding a CDK inhibitor of Cdc28-Clb kinase activity. Sic1p is involved in both mitotic exit and the timing of DNA synthesis. To identify other genes involved in controlling Clb-kinase activity, we have undertaken a genetic screen for mutations which render SIC1 essential. Here we describe a gene we have identified by this means, RSI1/APC2. Temperature-sensitive rsi1/apc2 mutants arrest in metaphase and are unable to degrade Clb2p, suggesting that Rsi1p/Apc2p is associated with the anaphase promoting complex (APC). This is an E3 ubiquitin-ligase that controls anaphase initiation through degradation of Pds1p and mitotic exit via degradation of Clb cyclins. Indeed, the anaphase block in rsi1/apc2 temperature-sensitive mutants is overcome by removal of PDS1, consistent with Rsi1p/Apc2p being part of the APC. In addition, like our rsi1/apc2 mutations, cdc23-1, encoding a known APC subunit, is also lethal with sic1Delta. Thus SIC1 clearly becomes essential when APC function is compromised. Finally, we find that Rsi1p/Apc2p co-immunoprecipitates with Cdc23p. Taken together, our results suggest that RSI1/APC2 is a subunit of APC. 相似文献
20.
Proteolysis of Rad17 by Cdh1/APC regulates checkpoint termination and recovery from genotoxic stress
Liyong Zhang Chi‐Hoon Park Jing Wu Hyun Kim Weijun Liu Takeo Fujita Manimalha Balasubramani Emanuel M Schreiber Xiao‐Fan Wang Yong Wan 《The EMBO journal》2010,29(10):1726-1737
Recent studies have shown a critical function for the ubiquitin‐proteasome system (UPS) in regulating the signalling network for DNA damage responses and DNA repair. To search for new UPS targets in the DNA damage signalling pathway, we have carried out a non‐biased assay to identify fast‐turnover proteins induced by various types of genotoxic stress. This endeavour led to the identification of Rad17 as a protein exhibiting a distinctive pattern of upregulation followed by subsequent degradation after exposure to UV radiation in human primary cells. Our characterization showed that UV‐induced Rad17 oscillation is mediated by Cdh1/APC, a ubiquitin‐protein ligase. Studies using a degradation‐resistant Rad17 mutant demonstrated that Rad17 stabilization prevents the termination of checkpoint signalling, which in turn attenuates the cellular re‐entry into cell‐cycle progression. The findings provide an insight into how the proteolysis of Rad17 by Cdh1/APC regulates the termination of checkpoint signalling and the recovery from genotoxic stress. 相似文献