首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Endosperm texture, i.e. the hardness or softness of the grain, is an important quality criterion in cereals because it determines many grain end-use properties. Grain softness is the dominant trait and is mainly controlled by the Ha locus on the short arm of chromosome 5D in hexaploid bread wheat. Genes for puroindoline a (Pina-D1), puroindoline b (Pinb-D1), and grain softness related protein (Gsp-D1) have been shown to be linked to the Ha locus in different mapping populations and have been associated with the expression of grain softness. The study of the linkage relationships among these genes has been limited by the low level of polymorphism in the D genome of hexaploid Triticum aestivum. In the present study, a highly polymorphic Triticum monococcum mapping population was used to analyze linkage relationships among these three genes. Gsp-A m 1 and Pina-A m 1 were found to be completely linked and lie 0.14 cM distal to Pinb-A m 1 in the distal region of the short arm of chromosome 5Am. The tight genetic linkage among these three genes was paralleled by their physical proximity within a single 105-kb clone isolated from a T. monococcum bacterial artificial chromosome (BAC) library. A restriction map of this BAC clone showed that Pina-A m 1 is located between Pinb-A m 1 and Gsp-A m 1. Partial sequences of the T. monococcum genes showed a high degree of similarity with their T. aestivum counterparts (≥ 94%). Marker-assisted selection strategies based on the tight linkage among Ha-related genes are discussed. Received: 27 June 1999 / Accepted: 18 August 1999  相似文献   

2.
Wide hybrids have been used in generating genetic maps of many plant species. In this study, genetic and physical mapping was performed on ph1b-induced recombinants of rye chromosome 2R in wheat (Triticum aestivum L.). All recombinants were single breakpoint translocations. Recombination 2RS-2BS was absent from the terminal and the pericentric regions and was distributed randomly along an intercalary segment covering approximately 65% of the arm's length. Such a distribution probably resulted from structural differences at the telomeres of 2RS and wheat 2BS arm that disrupted telomeric initiation of pairing. Recombination 2RL-2BL was confined to the terminal 25% of the arm's length. A genetic map of homoeologous recombination 2R-2B was generated using relative recombination frequencies and aligned with maps of chromosomes 2B and 2R based on homologous recombination. The alignment of the short arms showed a shift of homoeologous recombination toward the centromere. On the long arms, the distribution of homoeologous recombination was the same as that of homologous recombination in the distal halves of the maps, but the absence of multiple crossovers in homoeologous recombination eliminated the proximal half of the map. The results confirm that homoeologous recombination in wheat is based on single exchanges per arm, indicate that the distribution of these single homoeologous exchanges is similar to the distribution of the first (distal) crossovers in homologues, and suggest that successive crossovers in an arm generate specific portions of genetic maps. A difference in the distribution of recombination between the short and long arms indicates that the distal crossover localization in wheat is not dictated by a restricted distribution of DNA sequences capable of recombination but by the pattern of pairing initiation, and that can be affected by structural differences. Restriction of homoeologous recombination to single crossovers in the distal part of the genetic map complicates chromosome engineering efforts targeting genes in the proximal map regions.  相似文献   

3.
Lee TG  Lee YJ  Kim DY  Seo YW 《Genetica》2010,138(11-12):1277-1296
Physical maps of chromosomes provide a framework for organizing and integrating diverse genetic information. DNA microarrays are a valuable technique for physical mapping and can also be used to facilitate the discovery of single feature polymorphisms (SFPs). Wheat chromosome arm 2BL was physically mapped using a Wheat Genome Array onto near-isogenic lines (NILs) with the aid of wheat-rice synteny and mapped wheat EST information. Using high variance probe set (HVP) analysis, 314 HVPs constituting genes present on 2BL were identified. The 314 HVPs were grouped into 3 categories: HVPs that match only rice chromosome 4 (298 HVPs), those that match only wheat ESTs mapped on 2BL (1), and those that match both rice chromosome 4 and wheat ESTs mapped on 2BL (15). All HVPs were converted into gene sets, which represented either unique rice gene models or mapped wheat ESTs that matched identified HVPs. Comparative physical maps were constructed for 16 wheat gene sets and 271 rice gene sets. Of the 271 rice gene sets, 257 were mapped to the 18-35?Mb regions on rice chromosome 4. Based on HVP analysis and sequence similarity between the gene models in the rice chromosomes and mapped wheat ESTs, the outermost rice gene model that limits the translocation breakpoint to orthologous regions was identified.  相似文献   

4.
Characterization of inherited variations within tandem arrays of dinucleotide repeats has substantially advanced the construction of genetic maps using linkage approaches over the last several years. Using a backbone of 10 newly identified microsatellite repeats on human chromosome 4 and 6 previously identified short tandem repeat element polymorphisms, we have constructed several genetic maps and a physical map of human chromosome 4. The genetic and physical maps are in complete concordance with each other. The genetic maps include a 15-locus microsatellite-based linkage map, a framework map of high support incorporating a total of 39 independent loci, a 25-locus high-heterozygosity, easily used index map, and a gene-based comprehensive map that provides the best genetic location for 35 genes mapped to chromosome 4. The 16 microsatellite markers are each localized to one of nine regions of chromosome 4, delineated by a panel of somatic cell hybrids. These results demonstrate the utility of PCR-based repeat elements for the construction of genetic maps and provide a valuable resource for continued high-resolution mapping of chromosome 4 and of genetic disorders to this chromosome.  相似文献   

5.
A cytogenetically based physical map of chromosome 1B in common wheat.   总被引:11,自引:0,他引:11  
R S Kota  K S Gill  B S Gill  T R Endo 《Génome》1993,36(3):548-554
We have constructed a cytogenetically based physical map of chromosome 1B in common wheat by utilizing a total of 18 homozygous deletion stocks. It was possible to divide chromosome 1B into 17 subregions. Nineteen genetic markers are physically mapped to nine subregions of chromosome 1B. Comparison of the cytological map of chromosome 1B with an RFLP-based genetic linkage map of Triticum tauschii revealed that the linear order of the genetic markers was maintained between chromosome 1B of hexaploid wheat and 1D of T. tauschii. Striking differences were observed between the physical and genetic maps in relation to the relative distances between the genetic markers. The genetic markers clustered in the middle of the genetic map were physically located in the distal regions of both arms of chromosome 1B. It is unclear whether the increased recombination in the distal regions of chromosome 1B is due to specific regions of increased recombination or a more broadly distributed increase in recombination in the distal regions of Triticeae chromosomes.  相似文献   

6.
7.
Rivolta C  Pagni M 《Genetics》1999,151(4):1239-1244
Sequencing of the complete Bacillus subtilis chromosome revealed the presence of approximately 4100 genes, 1000 of which were previously identified and mapped by classical genetic crosses. Comparison of these experimentally determined positions to those derived from the nucleotide sequence showed discrepancies reaching up to 24 degrees (approximately 280 kb). The size of these discrepancies as a function of their position along the chromosome is not random but, apparently, reveals some periodicity. Our analyses demonstrate that the discrepancies can be accounted for by inaccurate positioning of the early reference markers with respect to which all subsequently identified loci were mapped by transduction and transformation. We conclude (i) that specific DNA sequences, such as recombination hotspots or presence of heterologous DNA, had no detectable effect on the results obtained by classical mapping, and (ii) that PBS1 transduction appears to be an accurate and unbiased mapping method in B. subtilis.  相似文献   

8.
The jerker mutation causes degeneration of cochlea and vestibular sensory hair cells in mice. A frame-shift mutation in the actin bundling gene Espin (Espn) leads to hair bundle defects by disrupting the actin filament assembly in stereocilia. Previously, jerker was mapped to distal mouse chromosome 4. Here, analyzing 2536 informative meioses derived from two intersubspecific intercrosses, we localize jerker to a 0.51+/-0.14cM interval on chromosome 4. The following order and distances of genes and markers were determined: D4Mit180-0.44+/-0.13cM-Hes2, Espn(je)-0.08+/-0.06cM-D4Mit356-0.28+/-0.1cM-D4Mit208. A 300kb physical bacterial artificial chromosome (BAC) contig was generated containing the Espn(je) locus. The human homologous region maps to 1p36.31. We present a detailed high-resolution genetic and physical map of markers located at distal chromosome 4 and demonstrate concordance of Espn with jerker.  相似文献   

9.
The hyper-IgE syndrome (HIES) is a rare primary immunodeficiency characterized by recurrent skin abscesses, pneumonia, and highly elevated levels of serum IgE. HIES is now recognized as a multisystem disorder, with nonimmunologic abnormalities of the dentition, bones, and connective tissue. HIES can be transmitted as an autosomal dominant trait with variable expressivity. Nineteen kindreds with multiple cases of HIES were scored for clinical and laboratory findings and were genotyped with polymorphic markers in a candidate region on human chromosome 4. Linkage analysis showed a maximum two-point LOD score of 3.61 at recombination fraction of 0 with marker D4S428. Multipoint analysis and simulation testing confirmed that the proximal 4q region contains a disease locus for HIES.  相似文献   

10.
A region of chromosome 9, surrounding the interferon-beta (IFNB1) locus and the interferon-alpha (IFNA) gene cluster on 9p13-p22, has been shown to be frequently deleted or rearranged in a number of human cancers, including leukemia, glioma, non-small-cell lung carcinoma, and melanoma. To assist in better defining the precise region(s) of 9p implicated in each of these malignancies, a combined genetic and physical map of this region was generated using the available 9p markers IFNB1, IFNA, D9S3, and D9S19, along with a newly described locus, D9S126. The relative order and distances between these loci were determined by multipoint linkage analysis of CEPH (Centre d'Etude du Polymorphisme Humain) pedigree DNAs, pulsed-field gel electrophoresis, and fluorescence in situ hybridization. All three mapping approaches gave concordant results and, in the case of multipoint linkage analysis, the following gene order was supported for these and other closely linked chromosome 9 markers present in the CEPH database: pter-D9S33-IFNB1/IFNA-D9S126-D9S3-D9S19 -D9S9/D9S15-ASSP3-qter. This map serves to extend preexisting chromosome 9 maps (which focus primarily on 9q) and also reassigns D9S3 and D9S19 to more proximal locations on 9p.  相似文献   

11.
The objective of this study was to characterize the leaf rust resistance locusLr1 in wheat. Restriction fragment length polymorphism (RELP) analysis was performed on the resistant lineLr1/6*Thatcher and the susceptible varieties Thatcher and Frisal, as well as on the segregating F2 populations. Seventeen out of 37 RFLP probes mapping to group 5 chromosomes showed polymorphism betweenLr1/6*Thatcher and Frisal, whereas 11 probes were polymorphic between the near-isogenic lines (NILs)Lr1/6*Thatcher and Thatcher. Three of these probes were linked to the resistance gene in the segregating F2 populations. One probe (pTAG621) showed very tight linkage toLr1 and mapped to a single-copy region on chromosome 5D. The map location of pTAG621 at the end of the long arm of chromosome 5D was confirmed by the absence of the band in the nulli-tetrasomic line N5DT5B of Chinese Spring and a set of deletion lines of Chinese Spring lacking the distal part of 5DL. Twenty-seven breeding lines containing theLr1 resistance gene in different genetic backgrounds showed the same band asLr1/6*Thatcher when hybridized with pTAG621. The RFLP marker was converted to a sequence-tagged-site marker using polymerase chain reaction (PCR) amplification. Sequencing of the specific fragment amplified from both NILs revealed point mutations as well as small insertion/deletion events. These were used to design primers that allowed amplification of a specific product only from the resistant lineLr1/6*Thatcher. This STS, specific for theLr1 resistance gene, will allow efficient selection for the disease resistance gene in wheat breeding programmes. In addition, the identification of a D-genome-specific probe tightly linked toLr1 should ultimately provide the basis for positional cloning of the gene.  相似文献   

12.
Wheat is one of the most important staple crops worldwide and also an excellent model species for crop evolution and polyploidization studies. The breakthrough of sequencing the bread wheat genome and progenitor genomes lays the foundation to decipher the complexity of wheat origin and evolutionary process as well as the genetic consequences of polyploidization. In this study, we sequenced 3286 BACs from chromosome 7DL of bread wheat cv. Chinese Spring and integrated the unmapped contigs from IWGSC v1 and available PacBio sequences to close gaps present in the 7DL assembly. In total, 8043 out of 12 825 gaps, representing 3 491 264 bp, were closed. We then used the improved assembly of 7DL to perform comparative genomic analysis of bread wheat (Ta7DL) and its D donor, Aegilops tauschii (At7DL), to identify domestication signatures. Results showed a strong syntenic relationship between Ta7DL and At7DL, although some small rearrangements were detected at the distal regions. A total of 53 genes appear to be lost genes during wheat polyploidization, with 23% (12 genes) as RGA (disease resistance gene analogue). Furthermore, 86 positively selected genes (PSGs) were identified, considered to be domestication‐related candidates. Finally, overlapping of QTLs obtained from GWAS analysis and PSGs indicated that TraesCS7D02G321000 may be one of the domestication genes involved in grain morphology. This study provides comparative information on the sequence, structure and organization between bread wheat and Ae. tauschii from the perspective of the 7DL chromosome, which contribute to better understanding of the evolution of wheat, and supports wheat crop improvement.  相似文献   

13.
The temperature-sensitive nucleoid segregation mutant of Escherichia coli, PAT32, formerly described as a parA mutant, has been shown to carry a mutation near 66 min on the genetic map. Fine mapping with phages from the collection of Kohara et al. is consistent with its being a parC allele. Observation by fluorescence microscopy revealed the formation, at a nonpermissive temperature, of filaments containing one or two large nucleoids and of normal-size anucleate cells. There was also a significant loss of viability.  相似文献   

14.
15.
《BMC genomics》2015,16(1)

Background

A complete genome sequence is an essential tool for the genetic improvement of wheat. Because the wheat genome is large, highly repetitive and complex due to its allohexaploid nature, the International Wheat Genome Sequencing Consortium (IWGSC) chose a strategy that involves constructing bacterial artificial chromosome (BAC)-based physical maps of individual chromosomes and performing BAC-by-BAC sequencing. Here, we report the construction of a physical map of chromosome 6B with the goal of revealing the structural features of the third largest chromosome in wheat.

Results

We assembled 689 informative BAC contigs (hereafter reffered to as contigs) representing 91 % of the entire physical length of wheat chromosome 6B. The contigs were integrated into a radiation hybrid (RH) map of chromosome 6B, with one linkage group consisting of 448 loci with 653 markers. The order and direction of 480 contigs, corresponding to 87 % of the total length of 6B, were determined. We also characterized the contigs that contained a part of the nucleolus organizer region or centromere based on their positions on the RH map and the assembled BAC clone sequences. Analysis of the virtual gene order along 6B using the information collected for the integrated map revealed the presence of several chromosomal rearrangements, indicating evolutionary events that occurred on chromosome 6B.

Conclusions

We constructed a reliable physical map of chromosome 6B, enabling us to analyze its genomic structure and evolutionary progression. More importantly, the physical map should provide a high-quality and map-based reference sequence that will serve as a resource for wheat chromosome 6B.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1803-y) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
18.
Powdery mildew significantly affects grain yield and end-use quality of winter wheat in the southern Great Plains. Employing resistance resources in locally adapted cultivars is the most effective means to control powdery mildew. Two types of powdery mildew resistance exist in wheat cultivars, i.e., qualitative and quantitative. Qualitative resistance is controlled by major genes, is race-specific, is not durable, and is effective in seedlings and in adult plants. Quantitative resistance is controlled by minor genes, is non-race-specific, is durable, and is predominantly effective in adult plants. In this study, we found that the segregation of powdery mildew resistance in a population of recombinant inbred lines developed from a cross between the susceptible cultivar Jagger and the resistant cultivar 2174 was controlled by a major QTL on the short arm of chromosome 1A and modified by four minor QTLs on chromosomes 1B, 3B, 4A, and 6D. The major QTL was mapped to the genomic region where the Pm3 gene resides. Using specific PCR markers for seven Pm3 alleles, 2174 was found to carry the Pm3a allele. Pm3a explained 61% of the total phenotypic variation in disease reaction observed among seedlings inoculated in the greenhouse and adult plants grown in the field and subjected to natural disease pressure. The resistant Pm3a allele was present among 4 of 31 cultivars currently being produced in the southern Great Plains. The genetic effects of several minor loci varied with different developmental stages and environments. Molecular markers associated with these genetic loci would facilitate incorporating genetic resistance to powdery mildew into improved winter wheat cultivars.  相似文献   

19.
Summary The gene encoding a variant of alcohol dehydrogenase, Adh-, has been found to be associated with the chromosome of the Mv genome which is present in type 9 wheat/Aegilops ventricosa addition line, to which the genes for protein CM-4 and for a phosphatase variant, Aph-v, had been previously assigned. Transfer line H-93-33, which has 42 chromosomes and has been derived from the cross (Triticum turgidum x Ae. ventricosa) x T. aestivum, carries genes encoding all three biochemical markers. Linkage between these genes has been demonstrated by analysis of individual kernels of the F2 (H-93-33 x T. aestivum cv. Almatense H-10-15). A study of the hybrids of line H-93-33 with T. aestivum H-10-15 and with the 4DS ditelosomic line has confirmed that, as suspected, the linkage group corresponds to chromosome 4Mv from Ae. ventricosa. Additionally, it has been found that the previously reported resistance of line H-93-33 to powdery mildew (Erysiphe graminis) is also linked to the biochemical markers; this indicates that either the gene responsible for it is different from that in lines H-93-8 and H-93-35, or that a translocation between two different Mv chromosomes has occurred in line H-93-33.  相似文献   

20.
A-genome diploid wheats represent the earliest domesticated and cultivated wheat species in the Fertile Crescent and include the donor of the wheat A sub-genome. The A-genome species encompass the cultivated einkorn (Triticum monococcum L. subsp. monococcum), wild einkorn (T. monococcum L. subsp. aegilopoides (Link) Thell.), and Triticum urartu. We evaluated the collection of 930 accessions in the Wheat Genetics Resource Center (WGRC) using genotyping by sequencing and identified 13,860 curated single-nucleotide polymorphisms. Genomic analysis detected misclassified and genetically identical (>99%) accessions, with most of the identical accessions originating from the same or nearby locations. About 56% (n = 520) of the WGRC A-genome species collections were genetically identical, supporting the need for genomic characterization for effective curation and maintenance of these collections. Population structure analysis confirmed the morphology-based classifications of the accessions and reflected the species geographic distributions. We also showed that T. urartu is the closest A-genome diploid to the A-subgenome in common wheat (Triticum aestivum L.) through phylogenetic analysis. Population analysis within the wild einkorn group showed three genetically distinct clusters, which corresponded with wild einkorn races α, β, and γ described previously. The T. monococcum genome-wide FST scan identified candidate genomic regions harboring a domestication selection signature at the Non-brittle rachis 1 (Btr1) locus on the short arm of chromosome 3Am at ∼70 Mb. We established an A-genome core set (79 accessions) based on allelic diversity, geographical distribution, and available phenotypic data. The individual species core set maintained at least 79% of allelic variants in the A-genome collection and constituted a valuable genetic resource to improve wheat and domesticated einkorn in breeding programs.

Genotyping diploid A-genome relatives of wheat uncovered high genetic diversity and unique evolutionary relationships giving insight to the effective use of this germplasm for wheat improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号