首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大豆萌发过程的活性氧代谢   总被引:16,自引:0,他引:16  
本文研究了大豆萌发过程中活性氧的产生与清除,并探讨了光因子在活性氧代谢中的作用。大豆呼吸强度、O产生速率及H2O2水平都在吸水后第四天达到高峰,然后下降,三者的变化趋势同步。SOD、POD及APX的活性随萌发过程而逐渐增强,最后趋于平稳。SOD同工酶谱中分别于萌发的第二、第三天各出现一条新的酶带。CAT在萌发的初期猛增50倍左右,之后趋于稳定。在三种清除H2O2的酶(CAT、POD、APX)中,CAT清除H2O2的能力远远高于POD与APX,CAT可能是大豆萌发过程中最主要的H2O2清除酶。光萌发时呼吸强度低于暗中萌发,但O产生速率与H2O2水平高于暗萌发,光萌发时O的产生占总耗氧量的1.1—2.7%,而暗中萌发为0.9—1.3%。光条件下SOD、APX活性明显高于暗中萌发,而POD与CAT则在光和暗条件下相差不大。  相似文献   

2.
Studies on the possible interference of colchicine and H2O2 with the activity of some antioxidant enzymes were carried out on Arabidopsis thaliana v. Columbia grown in Murashige and Skooge nutrient medium. Measurements of superoxide dismutase (SOD), guaiacol peroxidase (POX), ascorbate peroxidase (APX) and catalase (CAT) activities were conducted spectrophotometrically. In the presence of colchicine, SOD activity increased, while CAT, APX and POX activities decreased. Inhibitory H2O2 effects on the activity of the enzymes were found. Colchicine pre-treatment resulted in an increase in CAT activity and a further increase in SOD activity in plants treated with H2O2.  相似文献   

3.
Hydrogen peroxide (H2O2) is considered a signal molecule inducing cellular stress. Both heat shock (HS) and Cd can increase H2O2 content. We investigated the involvement of H2O2 in HS- and Cd-mediated changes in the expression of ascorbate peroxidase (APX) and glutathione reductase (GR) in leaves of rice seedlings. HS treatment increased the content of H2O2 before it increased activities of APX and GR in rice leaves. Moreover, HS-induced H2O2 production and APX and GR activities could be counteracted by the NADPH oxidase inhibitors dipehenylene iodonium (DPI) and imidazole (IMD). HS-induced OsAPX2 gene expression was associated with HS-induced APX activity but was not regulated by H2O2. Cd-increased H2O2 content and APX and GR activities were lower with than without HS. Cd did not increase the expression of OsAPX and OsGR without HS treatment. Cd increased H2O2 content by Cd before it increased APX and GR activities without HS. Treatment with DPI and IMD effectively inhibited Cd-induced H2O2 production and APX and GR activities. Moreover, the effects of DPI and IMD could be rescued with H2O2 treatment. H2O2 may be involved in the regulation of HS- and Cd-increased APX and GR activities in leaves of rice seedlings.  相似文献   

4.
Flower senescence was studied in Gladiolus cv. "Snow Princess" over five arbitrarily divided developmental stages (stage 1, half bloom; stage 2, full bloom; stage 3, beginning of wilting; stage 4, 50% wilting; stage 5, complete wilting) in terms of changes in fresh weight, antioxidant enzymes (superoxide dismutase, SOD; ascorbate peroxidase, APX; glutathione reductase, GR) activities and membrane integrity. A significant decrease in tepal fresh weight was observed over the senescence period (after stage 2). Membrane integrity was studied by measuring lipid peroxidation [in terms of thiobarbituric acid reactive substances (TBARS) content] and membrane stability index (MSI) percentage. Maximum TBARS content was recorded in stage 4 (50% wilting). This increase in lipid peroxidation over the senescence period was in close association with high degree of membrane deterioration expressed as decrease in membrane stability index percentage. A significant decrease (two and half-fold) in MSI% in stage 5 (as compared to stage 1) indicates complete membrane deterioration. Progressive increase in endogenous H2O2 level was recorded over senescence period. Maximum H2O2 content (19.7+/-1.4 micromol g(-1) DW) was recorded at stage 5 (complete wilting). Three different patterns were observed in antioxidant enzymes behavior over the senescence period. APX activity was declined significantly as, the flower entered stage 3 (beginning of wilting) from full bloom condition (stage 2). Progressive and significant increase in SOD activity was measured as a function of time. Maximum SOD activity (24.2+/-0.8 U mg(-1) DW) was recorded in stage 5 (three-fold increase over stage 1). GR activity initially increased up to stage 4 (50% wilting) and declined significantly thereafter (approximately seven-fold). An increase in endogenous H2O2 level during senescence may be the result of a programmed down-regulation of APX enzyme activity, which seems to be the prerequisite factor for initiating senescence process in gladiolus tepal.  相似文献   

5.
We investigated the interaction among abscisic acid (ABA), reactive oxygen species (ROS) and antioxidant defence system in the transduction of osmotic stress signalling using Arabidopsis thaliana WT (Columbia ecotype, WT) and an ABA-deficient mutant (aba2-1). For this, 50 μm ABA and osmotic stress, induced with 40% (w/v) polyethylene glycol (PEG8000; -0.7 MPa), were applied to WT and aba2-1 for 6, 12 or 24 h. Time course analysis was undertaken for determination of total/isoenzyme activity of the antioxidant enzymes, superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), NADPH oxidase (NOX; EC 1.6.3.1) activity; scavenging activity of the hydroxyl radical (OH˙), hydrogen peroxide (H(2) O(2) ); endogenous ABA and malondialdehyde (MDA). The highest H(2) O(2) and MDA content was found in PEG-treated groups of both genotypes, but with more in aba2-1. ABA treatment under stress reduced the accumulation of H(2) O(2) and MDA, while it promoted activity of SOD, CAT and APX. APX activity was higher than CAT activity in ABA-treated WT and aba2-1, indicating a protective role of APX rather than CAT during osmotic stress-induced oxidative damage. Treatment with ABA also significantly induced increased NOX activity. Oxidative damage was lower in ABA-treated seedlings of both genotypes, which was associated with greater activity of SOD (Mn-SOD1 and 2 and Fe-SOD isoenzymes), CAT and APX in these seedlings after 24 h of stress. These results suggest that osmotic stress effects were overcome by ABA treatment because of increased SOD, CAT, APX and NOX.  相似文献   

6.
To understand the functions of antioxidant enzymes during leaf development in sweetpotato, we investigated the activities of several antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX) and catalase (CAT). Significant increases were observed in the activities of SOD, POX and APX during the late stage of leaf development, whereas CAT activity increased during the early developmental stage. By RT-PCR analysis, various POX and APX genes showed differential expression patterns during leaf development. Four POX genes swpa3, swpa4, swpa6, swpb4 and one APX gene swAPX1 exhibited high levels of gene expression during the senescence stage of leaf development, but two POX genes, swpa1 and swpa7 were preferentially expressed at both the mature green and the late senescence stages of leaf development. These results indicate that hydrogen peroxide (H2O2)-related antioxidant enzymes are differentially regulated in the process of leaf development of sweetpotato.  相似文献   

7.
鲜切加工加速荸荠组织衰老与H2O2累积的关系   总被引:12,自引:0,他引:12  
以荸荠为材料,研究了鲜切加工加速组织衰老与活性氧代谢的关系.结果表明:鲜切加工提高了荸荠切片抗氧化酶(超氧化物歧化酶、抗坏血酸-过氧化物酶和过氧化氢酶)的活性;但同时明显刺激了O2-产生,促进了H2O2累积,加速了抗坏血酸在贮藏后期的损失,加强了膜脂过氧化作用和增加了电解质渗出率.统计分析表明H2O2含量、丙二醛含量、电解质渗出率三者之间存在正相关性.H2O2组织定位结果也证实鲜切加速组织衰老与H2O2累积密切相关.完整荸荠组织O2-产生比较平稳,抗氧化酶活性维持稳定,H2O2未有明显累积.  相似文献   

8.
烯效唑干拌种对小麦叶片衰老期间有关酶活性的影响   总被引:5,自引:0,他引:5  
研究不同浓度(0、10、20、40mg·kg-1)烯效唑干拌种对小麦品种川麦30不同叶序(3叶、7叶、旗叶)叶片衰老期间酶活性影响的结果表明,烯效唑干拌种后,不同叶序叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性增强,衰老后期仍维持较高水平;而核糖核酸酶(RNase)活性水平及上升速率则受抑,叶片中丙二醛(MDA)积累量减少,可溶性蛋白质含量下降缓慢.  相似文献   

9.
木薯华南8号组培苗对盐胁迫的生理响应   总被引:1,自引:0,他引:1  
薛晶晶  朱文丽  陈松笔 《广西植物》2016,36(12):1460-1467
以NaCl胁迫生长的木薯(Manihot esculenta)华南8号(SC8)组培苗为材料,研究不同浓度(0、5、20、35、50 mmol·L-1及R50 mmol·L-1)NaCl处理对SC8组培苗的生长状况及叶绿素、过氧化氢(H2 O2)、丙二醛(MDA)含量,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)活性的影响.结果表明:≤20 mmol·L-1的NaCl胁迫60 d对SC8组培苗的生长基本无影响;≥35 mmol·L-1的NaCl胁迫60 d抑制了SC8组培苗的生长,但高浓度(50 mmol·L-1)胁迫30 d后正常培养30 d,可以使SC8组培苗的长势得到恢复.叶绿素和MDA含量在≤35 mmol·L-1 NaCl处理下较对照出现积累现象,随NaCl浓度升高(≥50 mmol·L-1)含量开始下降;与对照相比,H2 O2含量在NaCl胁迫下未出现积累现象.NaCl胁迫下,POD、CAT和APX活性较对照均有所提高;较高浓度的NaCl处理下,SOD、CAT和APX活性开始降低.实时荧光定量PCR结果表明,≥50 mmol·L-1NaCl胁迫下,SOD、CAT、POD和APX的表达水平较对照出现上升现象.这说明短时间的盐胁迫不会对木薯造成致死伤害,可以通过调节生理指标的活性来提高木薯的耐盐性.  相似文献   

10.
11.
The effect of silicon (Si) on the growth, sodium (Na), chloride (Cl), boron (B) concentrations, lipid peroxidation (MDA), membrane permeability (MP), lypoxygenase activity (LOX), proline (PRO) and H(2)O(2) accumulation, and the activities of major antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT and ascorbate peroxidase, APX) of barley grown in original sodic-B toxic soil were investigated. Si applied to the sodic-B toxic soil at 70, 140 and 280 mg kg(-1) levels significantly increased Si concentrations of the plants and counteracted the deleterious effects of sodicity (Na ions) and B on shoot growth. Membrane permeability and the concentrations of H(2)O(2) and MDA increased, while PRO concentration decreased in plants grown in sodic-B toxic soil without Si. LOX activity was increased by applied Si. Compared with control plants, the activities of SOD and CAT were decreased, but APX was increased by applied Si levels.  相似文献   

12.
为探究α-萘乙酸(NAA)对植物抗寒性的影响,以白菜型冬油菜‘陇油6号’为试验材料,经4℃、NAA+4℃、NAA+4℃+DPI(NADPH氧化酶抑制剂)、NAA+4℃+DMTU(H2O2清除剂)、NAA+4℃+U0126(MAPK抑制剂)和NAA+4℃+Tungstate(NO生成抑制剂)处理后,研究其对‘陇油6号’油菜的活性氧(H2O2和O2-·)含量,抗氧化酶活性,丙二醛(MDA)、可溶性糖、脯氨酸和叶绿素含量,抗氧化酶基因(APX、CAT、GR、SOD)、Rboh A-F、MAPK3/4/6、CBF和ICE1基因表达量的影响。结果表明:与4℃低温处理相比,NAA+4℃处理下油菜根系中的细胞活性、H2O2和O2-·含量以及叶片中的MDA含量均降低;根系中的抗氧化酶(CAT、SOD、APX和POD)活性、叶片中的可溶性糖及脯氨酸含量、叶绿素含量、上述相关基因的表达量均升高,说明α-萘乙酸处理油菜可显著提高低温胁迫下油菜幼苗的抗氧化能力、光合能力和相关基因的表达,增强油菜幼苗的抗寒性。与NAA+4℃处理相比,NAA+4℃+抑制剂(DPI、DMTU、U0126和Tungstate)处理下油菜幼苗中叶绿素含量、抗氧化酶基因表达量、Rboh A-F、MAPK3/4/6、CBF和ICE1基因表达量均呈不同程度降低,说明H2O2和NO信号分子、NADPH氧化酶和MAP激酶级联途径均参与了α-萘乙酸增强油菜幼苗耐寒性过程的调控。  相似文献   

13.
以不结球白菜品种‘寒笑’种子为材料,研究高温(42℃)高湿(相对湿度100%)人工老化处理过程中种子活力及抗氧化相关特性的变化。结果显示:不结球白菜种子的发芽率、发芽势、发芽指数和活力指数随老化处理时间的延长而逐渐下降,不正常苗率逐渐增加;种子的超氧阴离子(O2.-)产生速率先增高后降低,过氧化氢(H2O2)含量逐渐增加,脂氧合酶(LOX)活性和丙二醛(MDA)含量下降,种子浸出液相对电导率增加;种子超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽还原酶(GR)活性随老化处理时间的延长逐渐下降,抗坏血酸过氧化物酶(APX)和谷胱甘肽过氧化物酶(GPX)活性在老化处理初期(老化3 d前)均增加,APX活性随后降低,GPX活性无显著变化;种子抗坏血酸(AsA)和还原型谷胱甘肽(GSH)含量在老化处理1 d后即显著降低并持续保持较低水平。研究表明,不结球白菜种子在人工加速老化过程中其抗氧化系统代谢紊乱并造成活性氧累积伤害,这可能是引起不结球白菜种子老化的重要原因。  相似文献   

14.
外源亚精胺对荇菜抗Hg2+胁迫能力的影响   总被引:25,自引:0,他引:25  
3 mg/L的Hg2降低了叶内亚精胺(spermidine,Spd)、精胺(spermine,Spm)含量,促进了腐胺(put resci ne,Put)合成,喷施Spd可提高叶内Spd、Spm含量,对Put含量则在低浓度下使其下降、高浓度(将近1mmo1/L)下使之上升.3mg/L的Hg2 可显著降低SOD、CaT、APx活性,提高02-产生速率,导致膜脂过氧化物(MDA)过量积累,造成叶绿素、可溶性蛋白大幅度下降.而喷施Spd可减轻Hg2 处理的这些作用,喷施的最适浓度为0.1~0.5 mmol/L.  相似文献   

15.
16.
The possible physiological mechanism of enhancement of cold tolerance by salicylic acid (SA) in banana seedlings (Musa acuminata cv. Williams 8188) was explored. Measurements of leakage electrolyte after 2 d of recovery at 30/22 ℃ (day/night) following 3 d of cold stress at 7 ℃ showed that pretreatment with hydroponic solution containing SA 0.3-0.9 mmol/L as foliar spray under normal growth conditions (30/22 ℃) could significantly enhance cold tolerance of banana plants. The highest enhancing effect of SA occurred at 0.5 mmol/L and it showed the lowest leakage rate of electrolyte or smaller leaf wilting area after 2 d of recovery at normal temperature from 3 d of 7 ℃ or 5 ℃ cold stress. Higher concentrations (≥2.5 mmol/L) of SA, however, caused more electrolyte leakage, indicating that they aggravated chilling damage. Enhanced cold tolerance by SA could be related to H2O2 metabolism. Compared with water-treated seedlings (control), SA 0.5 mmol/L treatment inhibited activities of catalase (CAT) and ascorbate peroxidase (APX), increased peroxidase (POX) activity, but did not affect the activity of superoxide dismutase (SOD) under normal growth conditions, and these changes might lead to an accumulation of H2O2, whereas SA pretreatment enhanced the activities of CAT and APX, and reduced the increase in productions of H2O2 and thiobarbituric acid-reaction substances (TBARS) during subsequent 7 ℃ cold stress and recovery periods. Exogenous H2O2 treatments (1.5-2.5 mmol/L) also increased cold tolerance of banana seedlings. Furthermore, pretreatment of banana seedlings with dimethylthiourea (a trap for H2O2) significantly inhibited cold tolerance induced by SA. These results suggested that endogenous H2O2 may be required for SA-enhanced cold tolerance. The significance of the interaction of SA, H2O2 and H2O2-metabolizing enzymes during cold stress has been discussed.  相似文献   

17.
18.
渗透胁迫对黑麦幼苗活性氧和抗氧化酶活性的影响   总被引:1,自引:0,他引:1  
用20%聚乙二醇(PEG 6000)研究了渗透胁迫对黑麦(Secale cereale L.)幼苗活性氧(reactive oxygen species, ROS)和主要抗氧化酶—— 超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)、抗坏血酸过氧化物酶(ascorbate peroxidase, APX)和谷胱甘肽还原酶(glutathione reductase, GR)活性的影响。结果表明, 与对照相比, PEG处理明显提高了叶子和根中丙二醛(malondialdehyde, MDA)的含量、ROS的水平和以上4种抗氧化酶的活性。渗透胁迫下,叶子和根中MDA和ROS水平变化的规律基本相似, 但抗氧化酶活性在2种器官中表现不完全相同, 叶子中CAT的活性在对照和处理中无显著差异, 但在根中差异明显, 表明叶子中SOD、APX和GR在植物应答渗透胁迫中起重要作用, 而根中这4种抗氧化酶都参与植物对胁迫的反应。GR活性随PEG处理变化幅度显著高于其它抗氧化酶, 表明GR在黑麦应答渗透胁迫中所起作用可能强于其它抗氧化酶。  相似文献   

19.
等渗盐胁迫对番茄抗氧化酶和ATP酶及焦磷酸酶活性的影响   总被引:19,自引:0,他引:19  
用Ca(NO3)2 80 mmol/L和NaCl 120 mmol/L等渗溶液处理番茄幼苗后,细胞质和叶绿体中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)的活性升高,并且NaCl胁迫的作用明显高于Ca(NO3)2胁迫.Ca(NO3)2处理提高了线粒体中SOD、CAT、APX的活性,而NaCl处理降低了它们的活性.根系质膜H -ATPase、液泡膜H -ATPase、焦磷酸酶(H -PPase)的活性和叶片丙二醛(MDA)及脯氨酸含量在两种盐胁迫后明显增加.NaCl处理对植株生长的抑制程度明显高于Ca(NO3)2处理.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号