首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
A key challenge in studying protein/protein interactions is to accurately identify contact surfaces, i.e. regions of two proteins that are in direct physical contact. Aside from x-ray crystallography and NMR spectroscopy few methods are available that address this problem. Although x-ray crystallography often provides detailed information about contact surfaces, it is limited to situations when a co-crystal of proteins is available. NMR circumvents this requirement but is limited to small protein complexes. Other methods, for instance protection from proteolysis, are less direct and therefore less informative. Here we describe a new method that identifies candidate contact surfaces in protein complexes. The complexes are first stabilized by cross-linking. They are then digested with a protease, and the cross-linked fragments are analyzed by mass spectrometry. We applied this method, referred to as COSUMAS (contact surfaces by mass spectrometry), to two proteins, retinal guanylyl cyclase 1 (RetGC1) and guanylyl cyclase-activating protein-1 (GCAP-1), that regulate cGMP synthesis in photoreceptors. Two regions in GCAP-1 and three in RetGC1 were identified as possible contact sites. The two regions of RetGC1 that are in the vicinities of Cys(741) and Cys(780) map to a kinase homology domain in RetGC1. Their identities as contact sites were independently evaluated by peptide inhibition analysis. Peptides with sequences from these regions block GCAP-1-mediated regulation of guanylyl cyclase at both high and low Ca2+ concentrations. The two regions of GCAP-1 cross-linked to these peptides were in the vicinities of Cys(17) and Cys(105) of GCAP-1. Peptides with sequences derived from these regions inhibit guanylyl cyclase activity directly. These results support a model in which GCAP-1 binds constitutively to RetGC1 and regulates cyclase activity by structural changes caused by the binding or dissociation of Ca2+.  相似文献   

2.
Ca(2+)-binding guanylyl cyclase-activating proteins (GCAPs) stimulate photoreceptor membrane guanylyl cyclase (retGC) in the light when the free Ca(2+) concentrations in photoreceptors decrease from 600 to 50 nM. RetGC activated by GCAPs exhibits tight dimerization revealed by chemical cross-linking (Yu, H., Olshevskaya, E., Duda, T., Seno, K., Hayashi, F., Sharma, R. K., Dizhoor, A. M., and Yamazaki, A. (1999) J. Biol. Chem. 274, 15547-15555). We have found that the Ca(2+)-loaded GCAP-2 monomer undergoes reversible dimerization upon dissociation of Ca(2+). The ability of GCAP-2 and its several mutants to activate retGC in vitro correlates with their ability to dimerize at low free Ca(2+) concentrations. A constitutively active GCAP-2 mutant E80Q/E116Q/D158N that stimulates retGC regardless of the free Ca(2+) concentrations forms dimers both in the absence and in the presence of Ca(2+). Several GCAP-2/neurocalcin chimera proteins that cannot efficiently activate retGC in low Ca(2+) concentrations are also unable to dimerize in the absence of Ca(2+). Additional mutation that restores normal activity of the GCAP-2 chimera mutant also restores its ability to dimerize in the absence of Ca(2+). These results suggest that dimerization of GCAP-2 can be a part of the mechanism by which GCAP-2 regulates the photoreceptor guanylyl cyclase. The Ca(2+)-free GCAP-1 is also capable of dimerization in the absence of Ca(2+), but unlike GCAP-2, dimerization of GCAP-1 is resistant to the presence of Ca(2+).  相似文献   

3.
Guanylyl cyclases (GCs) catalyze the formation of the second messenger guanosine 3',5'-cyclic monophosphate (cGMP) from guanosine 5'-triphosphate (GTP). While many cGMP-mediated processes in plants have been reported, no plant molecule with GC activity has been identified. When the Arabidopsis thaliana genome is queried with GC sequences from cyanobacteria, lower and higher eukaryotes no unassigned proteins with significant similarity are found. However, a motif search of the A. thaliana genome based on conserved and functionally assigned amino acids in the catalytic center of annotated GCs returns one candidate that also contains the adjacent glycine-rich domain typical for GCs. In this molecule, termed AtGC1, the catalytic domain is in the N-terminal part. AtGC1 contains the arginine or lysine that participates in hydrogen bonding with guanine and the cysteine that confers substrate specificity for GTP. When AtGC1 is expressed in Escherichia coli, cell extracts yield >2.5 times more cGMP than control extracts and this increase is not nitric oxide dependent. Furthermore, purified recombinant AtGC1 has Mg(2+)-dependent GC activity in vitro and >3 times less adenylyl cyclase activity when assayed with ATP as substrate in the absence of GTP. Catalytic activity in vitro proves that AtGC1 can function either as a monomer or homo-oligomer. AtGC1 is thus not only the first functional plant GC but also, due to its unusual domain organization, a member of a new class of GCs.  相似文献   

4.
The ERM proteins (ezrin, radixin, moesin) together with merlin comprise a subgroup of the band 4.1 superfamily. These proteins act as membrane cytoskeletal linker proteins mediating interactions between the cytoplasmic domains of transmembrane proteins and actin. To better understand how the ERM proteins function to regulate these junctional complexes, a yeast 2-hybrid screen was undertaken using ezrin as a bait. We describe here the identification and cloning of a novel protein, PACE-1, which binds to the C-terminal domain of ezrin. Characterization of PACE-1 in human breast cancer cell lines demonstrates it to have two distinct intracellular localizations. A proportion of the protein is associated with the cytoplasmic face of the Golgi apparatus. This distribution is dependent upon the presence of the PACE-1 N-terminal myristoylation consensus sequence but is not dependent on an association with ezrin. In contrast, PACE-1 colocalises with ezrin in the lamellipodia, where ezrin has a role in cell spreading and motility. A notable feature of PACE-1 is the presence of a putative N-terminal kinase domain; however, in biochemical assays PACE-1 was shown to have associated rather than intrinsic kinase activity. Together these data suggest that PACE-1 may play a role in regulating cell adhesion/migration complexes in migrating cells.  相似文献   

5.
Receptor expressed in lymphoid tissues (RELT) proteins are recently described surface receptors belonging to the larger TNF receptor family. To improve our understanding of RELT-mediated signal transduction, we performed a screen for RELT-interacting proteins. Phospholipid Scramblase 1 (PLSCR1) was identified through a yeast two-hybrid genetic screen utilizing the intracellular portion of the RELT family member, RELL1, as bait. PLSCR1 was observed to physically interact with all known RELT family members as determined by co-immunoprecipitation experiments. The protein kinase, oxidative stress responsive 1 (OSR1) was previously shown to interact and phosphorylate all three RELT family members. In our study, no physical association was observed between OSR1 and PLSCR1 alone. However, in the presence of RELT, OSR1 was capable of co-immunoprecipitating PLSCR1, suggesting the formation of a protein complex between RELT, OSR1, and PLSCR1. In addition, OSR1 phosphorylated PLSCR1 in an in vitro kinase assay, but only in the presence of RELT, suggesting a functional multiprotein complex. RELT and PLSCR1 co-localized in intracellular regions of human embryonic kidney-293 cells, with RELT overexpression appearing to alter the localization of PLSCR1. These studies demonstrate that RELT family members physically interact with PLSCR1, and that these interactions may regulate the phosphorylation of PLSCR1 by OSR1.  相似文献   

6.
The Fanconi anemia (FA) core complex plays a crucial role in a DNA damage response network with BRCA1 and BRCA2. How this complex interacts with damaged DNA is unknown, as only the FA core protein FANCM (the homolog of an archaeal helicase/nuclease known as HEF) exhibits DNA binding activity. Here, we describe the identification of FAAP24, a protein that targets FANCM to structures that mimic intermediates formed during the replication/repair of damaged DNA. FAAP24 shares homology with the XPF family of flap/fork endonucleases, associates with the C-terminal region of FANCM, and is a component of the FA core complex. FAAP24 is required for normal levels of FANCD2 monoubiquitylation following DNA damage. Depletion of FAAP24 by siRNA results in cellular hypersensitivity to DNA crosslinking agents and chromosomal instability. Our data indicate that the FANCM/FAAP24 complex may play a key role in recruitment of the FA core complex to damaged DNA.  相似文献   

7.
The vanilloid receptor (VR1 or TRPV1) is a capsaicin (CAP)-sensitive non-selective cation channel. Although its channel activity is reportedly modulated through protein-protein interactions, to date very few VR1 interacting proteins have been identified. To address this issue, a yeast two-hybrid screening technique using the C-terminus of rVR1 as bait was employed. Upon interrogation of a mouse brain library, one gene product that interacts with VR1 and is highly homologous to human eferin was found. Its interaction with VR1 was confirmed by GST-pull-down and co-immunoprecipitation. When cotransfected into HEK cells, VR1 and eferin largely colocalize. Furthermore, in rat dorsal root ganglion cells, the rat eferin homologue also colocalizes with rVR1. However, this protein had no significant effect on VR1 channel activity in response to CAP. This was determined by two-electrode recording of oocytes and whole cell recording of HEK cells that were cotransfected with VR1 and human eferin.  相似文献   

8.
Prenylated Rab acceptor domain family member 1 (PRAF1), a transmembrane protein whose precise function is unknown, localizes to the Golgi complex, post-Golgi vesicles, lipid rafts, endosomes, and the plasma membrane. VAMP2 and Rab3A are SNARE proteins that interact with PRAF1, and, as part of a SNARE complex, PRAF1 may function in the regulation of docking and fusion of transport vesicles both in the Golgi complex and at the plasma membrane. Alternately, PRAF1 may function as a sorting protein in the Golgi complex. In addition to interacting with SNARE proteins, PRAF1 interacts with rotaviral, retroviral, and herpes viral proteins. The function of viral protein interaction is unknown, but PRAF1 may enhance rotaviral and retroviral assembly. In contrast, PRAF1 may inhibit the herpes virus life cycle.  相似文献   

9.
It has been believed that retinal guanylyl cyclase (retGC), a key enzyme in the cGMP recovery to the dark state, is solely activated by guanylyl cyclase-activating proteins (GCAPs) in a Ca2+-sensitive manner. However, a question has arisen as to whether the observed GCAP stimulation of retGC is sufficient to account for the cGMP recovery because the stimulated activity measured in vitro is less than the light/GTP-activated cGMP phosphodiesterase activity. Here we report that the retGC activation by GCAPs is larger than previously reported and that a preincubation with adenine nucleotide is essential for the large activation. Under certain conditions, ATP is two times more effective than adenylyl imidodiphosphate (AMP-PNP), a hydrolysis-resistant ATP analog; however, this study mainly used AMP-PNP to focus on the role of adenine nucleotide binding to retGC. When photoreceptor outer segment homogenates are preincubated with AMP-PNP (EC50 = 0.65 +/- 0.20 mM), GCAP2 enhanced the retGC activity 10-13 times over the control rate. Without AMP-PNP, GCAP2 stimulated the control activity only 3-4-fold as in previous reports. The large activation is due to a GCAP2-dependent increase in Vmax without an alteration of retGC affinity for GCAP2 (EC50 = 47.9 +/- 2.7 nM). GCAP1 stimulated retGC activity in a similar fashion but with lower affinity (EC50 = 308 nM). In the AMP-PNP preincubation, low Ca2+ concentrations are not required, and retGC exists as a monomeric form. This large activation is accomplished through enhanced action of GCAPs as shown by Ca2+ inhibition of the activity (IC50 = 178 nM). We propose that retGC is activated by a two-step mechanism: a conformational change by ATP binding to its kinase homology domain under high Ca2+ concentrations that allows large enhancement of GCAP activation under low Ca2+ concentrations.  相似文献   

10.
11.
We previously demonstrated that chronic morphine induces a change in G protein coupling by the mu opioid receptor (MOR) from Gi/o to Gs, concurrent with the instatement of an interaction between Gbetagamma and adenylyl cyclase types II and IV. These two signaling changes confer excitatory effects on the cell in place of the typical inhibition by opioids and are associated with morphine tolerance and dependence. Both signaling changes and these behavioral manifestations of chronic morphine are attenuated by cotreatment with ultra-low-dose naloxone. In the present work, using striatum from chronic morphine-treated rats, we isotyped the Gbeta within Gs and Go heterotrimers that coupled to MOR and compared these to the Gbeta isotype of the Gbetagamma that interacted with adenylyl cyclase II or IV after chronic morphine treatment. Isotyping results show that chronic morphine causes a Gs heterotrimer associated with MOR to release its Gbetagamma to interact with adenylyl cyclase. These data suggest that the switch to Gs coupling by MOR in response to chronic morphine, which is attenuated by ultra-low-dose opioid antagonist cotreatment, leads to a two-pronged stimulation of adenylyl cyclase utilizing both Galpha and Gbetagamma subunits of the Gs protein novel to this receptor.  相似文献   

12.
Nitric oxide signals through activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain) to the effector domain (catalytic domain), in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105) of the β subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-β1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC.  相似文献   

13.
《The Journal of cell biology》1989,109(6):2623-2632
Through a series of label transfer experiments, we have identified a HeLa cell nuclear protein that interacts with nuclear localization signals (NLSs). The protein has a molecular weight of 66,000 and an isoelectric point of approximately 6. It associates with a synthetic peptide that contains the SV-40 T antigen NLS peptide but not with an analogous peptide in which an asparagine is substituted for an essential lysine (un-NLS peptide). In addition to these peptides, several proteins have been tested as label donors. With the proteins, there is a correlation between nuclear localization (assayed with lysolecithin-permeabilized cells) and label transfer to the 66-kD protein. The NLS peptide (but not the un-NLS peptide) competes with the proteins in label transfer experiments, but neither wheat germ agglutinin nor ATP has an effect. These results suggest that the 66-kD protein functions as an NLS receptor in the first step of nuclear localization. In the course of this work, we have observed that the Staphylococcus aureus protein A is a strongly karyophilic protein. Its dramatic nuclear localization properties suggest that it may have multiple copies of an NLS.  相似文献   

14.
The type VI intermediate filament (IF) protein synemin is a unique member of the IF protein superfamily. Synemin associates with the major type III IF protein desmin forming heteropolymeric intermediate filaments (IFs) within developed mammalian striated muscle cells. These IFs encircle and link all adjacent myofibrils together at their Z-lines, as well as link the Z-lines of the peripheral layer of cellular myofibrils to the costameres located periodically along and subjacent to the sarcolemma. Costameres are multi-protein assemblies enriched in the cytoskeletal proteins vinculin, alpha-actinin, and talin. We report herein a direct interaction of human alpha-synemin with the cytoskeletal protein talin by protein-protein interaction assays. The 312 amino acid insert (SNTIII) present only within alpha-synemin binds to the rod domain of talin in vitro and co-localizes with talin at focal adhesion sites within mammalian muscle cells. Confocal microscopy studies showed that synemin co-localizes with talin within the costameres of human skeletal muscle cells. Analysis of the primary sequences of human alpha- and beta-synemins revealed that SNTIII is composed of seven tandem repeats, each containing a specific Ser/Thr-X-Arg-His/Gln (S/T-X-R-H/Q) motif. Our results suggest human alpha-synemin plays an essential role in linking the heteropolymeric IFs to adherens-type junctions, such as the costameres within mammalian striated muscle cells, via its interaction with talin, thereby helping provide mechanical integration for the muscle cell cytoskeleton.  相似文献   

15.
16.
Cbl-associated protein (CAP) is an adaptor protein that interacts with both signaling and cytoskeletal proteins. Here, we characterize the expression, localization and potential function of CAP in striated muscle. CAP is markedly induced during myoblast differentiation, and colocalizes with vinculin during costamerogenesis. In adult mice, CAP is enriched in oxidative muscle fibers, and it is found in membrane anchorage complexes, including intercalated discs, costameres, and myotendinous junctions. Using both yeast two-hybrid and proteomic approaches, we identified the sarcomeric protein filamin C (FLNc) as a binding partner for CAP. When overexpressed, CAP recruits FLNc to cell-extracellular matrix adhesions, where the two proteins cooperatively regulate actin reorganization. Moreover, overexpression of CAP inhibits FLNc-induced cell spreading on fibronectin. In dystrophin-deficient mdx mice, the expression and membrane localization of CAP is increased, concomitant with the elevated plasma membrane content of FLNc, suggesting that CAP may compensate for the reduced membrane linkage of the myofibrils due to the loss of the dystroglycan-sarcoglycan complex in these mice. Thus, through its interaction with FLNc, CAP provides another link between the myofibril cytoskeleton and the plasma membrane of muscle cells, and it may play a dynamic role in the regulation and maintenance of muscle structural integrity.  相似文献   

17.
The membrane-associated guanylate kinase protein, MAGI-1, has been shown to be a component of epithelial tight junctions in both Madin-Darby canine kidney cells and in intestinal epithelium. Because we have previously observed MAGI-1 expression in glomerular visceral epithelial cells (podocytes) of the kidney, we screened a glomerular cDNA library to identify the potential binding partners of MAGI-1 and isolated a partial cDNA encoding a novel protein. The partial cDNA exhibited a high degree of identity to an uncharacterized human cDNA clone, KIAA0989, which encodes a protein of 780 amino acids and contains a predicted coiled-coil domain in the middle of the protein. In vitro binding assays using the partial cDNA as a GST fusion protein confirm the binding to full-length MAGI-1 expressed in HEK293 cells, as well as endogenous MAGI-1, and also identified the first WW domain of MAGI-1 as the domain responsible for binding to this novel protein. Although a conventional PPxY binding motif for WW domains was not present in the partial cDNA clone, a variant WW binding motif was identified, LPxY, and found to be necessary for interacting with MAGI-1. When expressed in Madin-Darby canine kidney cells, the full-length novel protein was found to colocalize with MAGI-1 at the tight junction of these cells and the coiled-coil domain was found to be necessary for this localization. Because of its interaction with MAGI-1 and its localization to cell-cell junctions, this novel protein has been given the name MAGI-1-associated coiled-coil tight junction protein (MASCOT).  相似文献   

18.
The 3-phosphoinositide-dependent protein kinase-1 (PDK1) phosphorylates and activates a number of protein kinases of the AGC subfamily. The kinase domain of PDK1 interacts with a region of protein kinase C-related kinase-2 (PRK2), termed the PDK1-interacting fragment (PIF), through a hydrophobic motif. Here we identify a hydrophobic pocket in the small lobe of the PDK1 kinase domain, separate from the ATP- and substrate-binding sites, that interacts with PIF. Mutation of residues predicted to form part of this hydrophobic pocket either abolished or significantly diminished the affinity of PDK1 for PIF. PIF increased the rate at which PDK1 phosphorylated a synthetic dodecapeptide (T308tide), corresponding to the sequences surrounding the PDK1 phosphorylation site of PKB. This peptide is a poor substrate for PDK1, but a peptide comprising T308tide fused to the PDK1-binding motif of PIF was a vastly superior substrate for PDK1. Our results suggest that the PIF-binding pocket on the kinase domain of PDK1 acts as a 'docking site', enabling it to interact with and enhance the phosphorylation of its substrates.  相似文献   

19.
The mammalian retina contains at least two guanylyl cyclases (GC1 and GC2) and two guanylyl cyclase-activating proteins (GCAP1 and GCAP2). Here we present evidence of the presence of a new photoreceptor-specific GCAP, termed GCAP3, which is closely related to GCAP1. The sequence similarity of GCAP3 with GCAP1 and GCAP2 is 57 and 49%, respectively. Recombinant GCAP3 and GCAP2 stimulate GC1 and GC2 in low [Ca2+]free and inhibit GCs when [Ca2+]free is elevated, unlike GCAP1, which only stimulates GC1. GCAP3 is encoded by a distinct gene present in other mammalian species but could not be detected by genomic Southern blotting in rodents, amphibians, and lower vertebrates. The intron/exon arrangement of the GCAP3 gene is identical to that of the other GCAP genes. While the GCAP1 and GCAP2 genes are arranged in a tail-to-tail array on chromosome 6p in human, the GCAP3 gene is located on 3q13.1, suggesting an ancestral gene duplication/translocation event. The identification of multiple Ca2+-binding proteins that interact with GC is suggestive of complex regulatory mechanisms for photoreceptor GC.  相似文献   

20.
SPARC (osteonectin/BM-40), a secreted matricellular protein that promotes cellular deadhesion and motility in wound healing, carcinogenesis, and inflammation, binds to the scavenger receptor stabilin-1 in alternatively activated macrophages and undergoes endocytosis and clearance from the extracellular space. Both SPARC and stabilin-1 are expressed by endothelial cells during inflammation, but their interaction in this context is unknown. We have identified a binding site on SPARC for stabilin-1 by a solid-state peptide array coupled with a modified enzyme-linked immunosorbent assay. A monoclonal antibody that recognizes the identified binding site was also characterized that could be an inhibitor for the SPARC-stabilin-1 interaction in macrophages or endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号