首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Ammonia is a toxin that has been strongly implicated in the pathogenesis of hepatic encephalopathy (HE), and astrocytes appear to be the principal target of ammonia toxicity. Glutamine, a byproduct of ammonia metabolism, has been implicated in some of the deleterious effects of ammonia on the CNS. We have recently shown that ammonia induces the mitochondrial permeability transition (MPT) in cultured astrocytes, but not in neurons. We therefore determined whether glutamine is also capable of inducing the MPT in cultured astrocytes. Astrocytes were treated with glutamine (4.5 mM) for various time periods and the MPT was assessed by changes in 2-deoxyglucose (2-DG) mitochondrial permeability, calcein fluorescence assay, and by changes in cyclosporin A (CsA)-sensitive inner mitochondrial membrane potential (deltapsi(m)) using the potentiometric dye, JC-1. Astrocytes treated with glutamine significantly increased 2-DG permeability (120%, P<0.01), decreased mitochondrial calcein fluorescence, and concomitantly dissipated the deltapsi(m). All of these effects were blocked by CsA. These data indicate that glutamine induces the MPT in cultured astrocytes. The induction of the MPT by glutamine in astrocytes, and the subsequent development of mitochondrial dysfunction, may partially explain the deleterious affects of glutamine on the CNS in the setting of hyperammonemia.  相似文献   

2.
In order to determine whether disruption of mitochondrial function could trigger apoptosis in murine haematopoietic cells, we used the potassium ionophore valinomycin. Valinomycin induces apoptosis in the murine pre-B cell line BAF3, which cannot be inhibited by interleukin-3 addition or Bcl-2 over-expression. Valinomycin triggers rapid loss of mitochondrial membrane potential. This precedes cytoplasmic acidification, which leads to cysteine-active-site protease activation, DNA fragmentation and cell death. Bongkrekic acid, an inhibitor of the mitochondrial permeability transition, prevents acidification and subsequent induction of apoptosis by valinomycin.  相似文献   

3.
Respiratory complexes are believed to play a role in the function of the mitochondrial permeability transition pore (PTP), whose dysregulation affects the process of cell death and is involved in a variety of diseases, including cancer and degenerative disorders. We investigated here the PTP in cells devoid of mitochondrial DNA (ρ(0) cells), which lack respiration and constitute a model for the analysis of mitochondrial involvement in several pathological conditions. We observed that mitochondria of ρ(0) cells maintain a membrane potential and that this is readily dissipated after displacement of hexokinase (HK) II from the mitochondrial surface by treatment with either the drug clotrimazole or with a cell-permeant HK II peptide, or by placing ρ(0) cells in a medium without serum and glucose. The PTP inhibitor cyclosporin A (CsA) could decrease the mitochondrial depolarization induced by either HK II displacement or by nutrient depletion. We also found that a fraction of the kinases ERK1/2 and GSK3α/β is located in the mitochondrial matrix of ρ(0) cells, and that glucose and serum deprivation caused concomitant ERK1/2 inhibition and GSK3α/β activation with the ensuing phosphorylation of cyclophilin D, the mitochondrial target of CsA. GSK3α/β inhibition with indirubin-3'-oxime decreased PTP-induced cell death in ρ(0) cells following nutrient ablation. These findings indicate that ρ(0) cells are equipped with a functioning PTP, whose regulatory mechanisms are similar to those observed in cancer cells, and suggest that escape from PTP opening is a survival factor in this model of mitochondrial diseases. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

4.
Natamycin is an important tetraene (polyene) antibiotic produced in submerged culture by different strains of Streptomyces sp. In the present work, the effects of the addition of short-chain carboxylic acids (acetic, propionic and butyric) on cell growth and the kinetics of natamycin production were investigated during submerged cultivation of Streptomyces natalensis. The addition of acetic and propionic acids showed stimulatory effects on natamycin production when added to the fermentation medium at concentrations below 2 g L?1 at the beginning of cultivation. In addition, when acetic and propionic acids were added in a mixture (7:1) at a total concentration of 2 g L?1, antibiotic production increased significantly, reaching 3.0 g L?1 (approximately 223% and 250% increases in volumetric and specific antibiotic production, respectively, compared with the control culture). Moreover, the addition of carboxylic acids not only increased the antibiotic yield but also decreased the production time from 96 h to only 84 h in shake-flask cultures. A further enhancement in natamycin production was achieved by cultivation in a 2-L stirred-tank bioreactor under controlled pH conditions. The maximum volumetric production of 3.98 g L?1 was achieved after 84 h in carboxylic acid-supplemented culture (acetate and propionate in a ratio of 7:1).  相似文献   

5.
Adenine nucleotide translocase-porin-hexokinase complex isolated from rat brain, when reconstituted into phospholipid-cholesterol vesicles, exhibits all properties of the mitochondrial permeability transition pore [Beutner, G., Rück, A., Riede, B., Welte, W. and Brdiczka, D. (1996) FEBS Lett. 396, 189-195]. In the present work, the effect of long-chain fatty acids on such reconstituted pore was examined. Opening of the pore was measured by leakage of either malate or fluorescein sulphonate entrapped inside the vesicles. It was found that myristate and oleate in the presence of 50 or 100 microM Ca(2+) produced a partial release of the probes in a dose-dependent way. A dicarboxylic fatty acid analogue, that appeared inactive as protonophore in intact mitochondria, exerted no effect on pore opening in the reconstituted system. 100 microM Ca(2+) alone was without effect. Pore opening by fatty acids in the reconstituted system was partly prevented by cyclosporin A. The pore opening also occurred when the vesicles were incubated in the presence of pancreatic phospholipase A(2). In this case, the opening was decreased by cyclosporin A or serum albumin. These results indicate that long-chain fatty acids elicit opening of the permeability transition pore reconstituted in phospholipid vesicles in a similar way as in intact mitochondria [Wi&ecedil;ckowski, M.R. and Wojtczak, L. (1998) FEBS Lett. 423, 339-342].  相似文献   

6.
Mitochondrial permeability transition (mPT) is a crucial event in the progression to cell death in the setting of ischemia-reperfusion. We have used a model system in which mPT can be reliably and reproducibly induced to test the hypothesis that the profound protection associated with the phenomenon of myocardial preconditioning is mediated by suppression of the mPT. Adult rat myocytes were loaded with the fluorescent probe tetramethylrhodamine methyl ester, which generates oxidative stress on laser illumination, thus inducing the mPT (indicated by collapse of the mitochondrial membrane potential) and ATP depletion, seen as rigor contracture. The known inhibitors of the mPT, cyclosporin A (0.2 microM) and N-methyl-4-valine-cyclosporin A (0.4 microM), increased the time taken to induce the mPT by 1.8- and 2.9-fold, respectively, compared with control (P < 0.001) and rigor contracture by 1.5-fold compared with control (P < 0.001). Hypoxic preconditioning (HP) and pharmacological preconditioning, using diazoxide (30 microM) or nicorandil (100 microM), also increased the time taken to induce the mPT by 2.0-, 2.1-, and 1.5-fold, respectively (P < 0.001), and rigor contracture by 1.9-, 1.7-, and 1.5-fold, respectively, compared with control (P < 0.001). Effects of HP, diazoxide, and nicorandil were abolished in the presence of mitochondrial ATP-sensitive K(+) (K(ATP)) channel blockers glibenclamide (10 microM) and 5-hydroxydecanoate (100 microM) but were maintained in the presence of the sarcolemmal K(ATP) channel blocker HMR-1098 (10 microM). In conclusion, preconditioning protects the myocardium by reducing the probability of the mPT, which normally occurs during ischemia-reperfusion in response to oxidative stress.  相似文献   

7.
The alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) alters DNA and stimulates the activity of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme involved in DNA repair. The consumption of cellular NAD(+) by PARP-1 is accompanied by ATP depletion, mitochondrial depolarization and release of proapoptotic proteins, but whether a causal relationship exists among these events remains an open question. Most of cellular NAD(+) is stored in the mitochondrial matrix and becomes available for cytosolic and nuclear processes only after its release through the permeability transition pore (PTP), a voltage-gated inner membrane channel. Here we have explored whether MNNG affects mitochondrial function upstream of PARP-1 activation. We show that MNNG has a dual effect on isolated mitochondria. At relatively low concentrations (up to 0.1 mM), it selectively sensitizes the PTP to opening, while at higher concentrations (above 0.5 mM) it inhibits carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP)-stimulated respiration. MNNG caused PTP opening and activation of the mitochondrial proapoptotic pathway in intact HeLa cells, which resulted in cell death that could be prevented by the PTP inhibitor CsA. We conclude that a key event in MNNG-dependent cell death is induction of PTP opening that occurs independently of PARP-1 activation.  相似文献   

8.
The effects of mycotoxin citrinin on Ca2+ efflux and membrane permeabilization were studied in isolated rat liver mitochondria. The efflux rate observed when in presence of ruthenium red was higher when citrinin was added. Swelling experiments demonstrated Ca2+-dependent membrane permeabilization by citrinin. Catalase, butylhydroxitoluene (BHT), and dithiothreitol (DTT) did not protect swelling caused by Ca2+ plus citrinin. The protection conferred by ATP–Mg2+ and cyclosporin A in the latter experiments are strong indications of pore formation. These results suggest that citrinin can induce permeability transition by a mechanism that does not involve oxidative damage. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 291–297, 1998  相似文献   

9.
10.
In the present study, we show that norbormide stimulates the opening of the permeability transition pore (PTP) in mitochondria from various organs of the rat but not of guinea pig and mouse. Norbormide does not affect the basic parameters that modulate the PTP activity since the proton electrochemical gradient, respiration, phosphorylation and Ca2+ influx processes are only partially affected. On the other hand, norbormide induces rat-specific changes in the fluidity of the lipid interior of mitochondrial membranes, as revealed by fluorescence anisotropy of various reporter molecules. Such changes increase the PTP open probability through the internal Me2+ regulatory site. The lack of PTP opening by norbormide is matched by a negligible perturbation of internal lipid domains in guinea pig and mouse, suggesting that the drug does not gain access to the matrix in the mitochondria from these species. Consistent with this interpretation, we demonstrate a preferential interaction of norbormide with the mitochondrial surface leading to alterations of the Me2+ binding affinity for the external PTP regulatory site. Our findings indicate that norbormide affects Me2+ binding to the regulatory sites of the PTP, and suggest that the drug could be taken up by a mitochondrial transport system unique to the rat. The characterization of the norbormide target may lead to a better understanding of the mechanisms underlying the mitochondrial PTP as well as to the identification of species-specific drugs that affect mitochondrial function.  相似文献   

11.
The mitochondrial permeability transition pore is a high conductance channel whose opening leads to an increase of mitochondrial inner membrane permeability to solutes with molecular masses up to approximately 1500 Da. In this review we trace the rise of the permeability transition pore from the status of in vitro artifact to that of effector mechanism of cell death. We then cover recent results based on genetic inactivation of putative permeability transition pore components, and discuss their meaning for our understanding of pore structure. Finally, we discuss evidence indicating that the permeability transition pore plays a role in pathophysiology, with specific emphasis on in vivo models of disease.  相似文献   

12.
In the present study, we show that norbormide stimulates the opening of the permeability transition pore (PTP) in mitochondria from various organs of the rat but not of guinea pig and mouse. Norbormide does not affect the basic parameters that modulate the PTP activity since the proton electrochemical gradient, respiration, phosphorylation and Ca(2+) influx processes are only partially affected. On the other hand, norbormide induces rat-specific changes in the fluidity of the lipid interior of mitochondrial membranes, as revealed by fluorescence anisotropy of various reporter molecules. Such changes increase the PTP open probability through the internal Me(2+) regulatory site. The lack of PTP opening by norbormide is matched by a negligible perturbation of internal lipid domains in guinea pig and mouse, suggesting that the drug does not gain access to the matrix in the mitochondria from these species. Consistent with this interpretation, we demonstrate a preferential interaction of norbormide with the mitochondrial surface leading to alterations of the Me(2+) binding affinity for the external PTP regulatory site. Our findings indicate that norbormide affects Me(2+) binding to the regulatory sites of the PTP, and suggest that the drug could be taken up by a mitochondrial transport system unique to the rat. The characterization of the norbormide target may lead to a better understanding of the mechanisms underlying the mitochondrial PTP as well as to the identification of species-specific drugs that affect mitochondrial function.  相似文献   

13.
《BBA》2023,1864(1):148914
Mitochondrial permeability transition (MPT) is a phenomenon that the inner mitochondrial membrane (IMM) loses its selective permeability, leading to mitochondrial dysfunction and cell injury. Electrophysiological evidence indicates the presence of a mega-channel commonly called permeability transition pore (PTP) whose opening is responsible for MPT. However, the molecular identity of the PTP is still under intensive investigations and debates, although cyclophilin D that is inhibited by cyclosporine A (CsA) is the established regulatory component of the PTP. PTP can also open transiently and functions as a rapid mitochondrial Ca2+ releasing mechanism. Mitochondrial fission and fusion, the main components of mitochondrial dynamics, control the number and size of mitochondria, and have been shown to play a role in regulating MPT directly or indirectly. Studies by us and others have indicated the potential existence of a form of transient MPT that is insensitive to CsA. This “non-conventional” MPT is regulated by mitochondrial dynamics and may serve a protective role possibly by decreasing the susceptibility for a frequent or sustained PTP opening; hence, it may have a therapeutic value in many disease conditions involving MPT.  相似文献   

14.
Role of mitochondrial permeability transition pores in mitochondrial autophagy   总被引:12,自引:0,他引:12  
During autophagy, cells rid themselves of damaged and superfluous mitochondria, as well as other organelles. This activation of mitochondrial turnover could be the result of changes in the physiological state of mitochondria. Confocal microscopy and fluorescence techniques indicate that onset of mitochondrial permeability transition is one such change. The mitochondrial permeability transition is a reversible phenomenon whereby the mitochondrial inner membrane becomes freely permeable to solutes of less than 1500 Da. At onset of the mitochondrial permeability transition, mitochondria depolarize, uncouple, and undergo large amplitude swelling due to opening of permeability transition pores, which may form by aggregation of damaged, misfolded membrane proteins. When injurious cellular stresses occur, cells may protect themselves using autophagy to remove damaged mitochondria and mutated mitochondrial DNA. Ca2+ overloading, reactive oxygen and nitrogen species, decreased mitochondrial membrane potential, and oxidation of pyridine nucleotides and glutathione all promote mitochondrial damage and onset of the mitochondrial permeability transition. The mitochondrial permeability transition is also associated with necrosis and apoptosis after a variety of stimuli. This review emphasizes the role of the mitochondrial permeability transition as a key event in mitochondrial autophagy.  相似文献   

15.
Aerobically grown yeast cells express mitochondrial lactate dehydrogenases that localize to the mitochondrial inner membrane. The D-lactate dehydrogenase is a zinc-flavoprotein with high acceptor specificity for cytochrome c, that catalyzes the oxidation of D-lactate into pyruvate. In this paper, we show that mitochondrial respiratory rate in phosphorylating or non-phosphorylating conditions with D-lactate as substrate is stimulated by carboxylic acids. This stimulation does not affect the yield of oxidative phosphorylation. Furthermore, this stimulation lies at the level of the D-lactate dehydrogenase. It is non-competitive, hyperbolic and its dimension is directly related to the number of carboxylic groups on the activator. The physiological meaning of such a regulation is discussed.  相似文献   

16.
Shedding light on the mitochondrial permeability transition   总被引:1,自引:0,他引:1  
The mitochondrial permeability transition is an increase of permeability of the inner mitochondrial membrane to ions and solutes with an exclusion size of about 1500Da. It is generally accepted that the permeability transition is due to opening of a high-conductance channel, the permeability transition pore. Although the molecular nature of the permeability transition pore remains undefined, a great deal is known about its regulation and role in pathophysiology. This review specifically covers the characterization of the permeability transition pore by chemical modification of specific residues through photoirradiation of mitochondria after treatment with porphyrins. The review also illustrates the basic principles of the photodynamic effect and the mechanisms of phototoxicity and discusses the unique properties of singlet oxygen generated by specific porphyrins in discrete mitochondrial domains. These experiments provided remarkable information on the role, interactions and topology of His and Cys residues in permeability transition pore modulation and defined an important role for the outer membrane 18kDa translocator protein (formerly known as the peripheral benzodiazepine receptor) in regulation of the permeability transition.  相似文献   

17.
Alavian and colleagues recently provided further evidence in support of the notion that the c subunit of the mitochondrial F1FO ATP synthase constitutes the long-sought pore-forming unit of the supramolecular complex responsible for the so-called ‘mitochondrial permeability transition’ (MPT). Besides shedding new light on the molecular mechanisms that underlie the MPT, these findings corroborate the notion that several components of the cell death machinery, including cytochrome c and the F1FO ATP synthase, mediate critical metabolic activities.  相似文献   

18.
Mitochondria, being the principal source of cellular energy, are vital for cell life. Yet, ironically, they are also major mediators of cell death, either by necrosis or apoptosis. One means by which these adverse effects occur is through the mitochondrial permeability transition (mPT) whereby the inner mitochondrial membrane suddenly becomes excessively permeable to ions and other solutes, resulting in a collapse of the inner membrane potential, ultimately leading to energy failure and cell necrosis. The mPT may also bring about the release of various factors known to cause apoptotic cell death. The principal factors leading to the mPT are elevated levels of intracellular Ca2+ and oxidative stress. Characteristically, the mPT is inhibited by cyclosporin A. This article will briefly discuss the concept of the mPT, its molecular composition, its inducers and regulators, agents that influence its activity and describe the consequences of its induction. Lastly, we will review its potential contribution to acute neurological disorders, including ischemia, trauma, and toxic-metabolic conditions, as well as its role in chronic neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.  相似文献   

19.
Hyperstimulation with cholecystokinin analogue cerulein induces a mild edematous pancreatitis in rats. There is evidence for a diminished energy metabolism of acinar cells in this experimental model. The aim of this study was to demonstrate permeability transition of the mitochondrial inner membrane as an early change in mitochondrial function and morphology. As functional parameters, the respiration and membrane potential of mitochondria isolated from control and cerulein-treated animals were measured, and changes in volume and morphology were investigated by swelling experiments and electron microscopy. Five hours after the first injection of cerulein, the leak respiration was nearly doubled and the resting membrane potential was decreased by about 17 mV. These alterations were reversed by extramitochondrial ADP or did not occur when cyclosporin A was added to the mitochondrial incubation. A considerable portion of the mitochondria isolated from cerulein-treated animals was swollen and showed dramatic changes in morphology such as a wrinkled outer membrane and the loss of a distinct cristae structure. These data provide evidence for the opening of the mitochondrial permeability transition pore at an early stage of cerulein induced pancreatitis. This suggests that the permeability transition is an initiating event for lysis of individual mitochondria and the initiation of apoptosis and/or necrosis, as had been shown to occur in this experimental model.  相似文献   

20.
Glycyrrhetinic acid (GE), the aglycone of glycyrrhizic acid, a triterpene glycoside which represents one of the main constituents of licorice root, induces an oxidative stress in liver mitochondria responsible for the induction of membrane permeability transition. In fact, GE, by interacting with the mitochondrial respiratory chain, generates hydrogen peroxide which in turn oxidizes critical thiol groups and endogenous pyridine nucleotides leading to the opening of the transition pore. Most likely the reactive group of GE is the carbonyl oxygen in C-11 which, by interacting mainly with a Fe/S centre of mitochondrial complex I, generates an oxygen-centered radical responsible for the pro-oxidant action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号