首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The succulent Kalanchoe blossfeldiana v. Poel. var Tom Thumb was treated on long and short photoperiods for 6 weeks during which short day plants developed thicker leaves, flowered prolifically, and exhibited extensive net dark fixation of carbon dioxide. In contrast, long day plants remained vegetative and did not develop thicker leaves or exhibit net carbon dioxide dark fixation. When examined after the photoperiodic state described, long day plants showed approximately three times more water loss over a 10-day period than short day plants. Water loss is similar during light and dark periods for short day plants but long day plants exhibited two times more water loss during the day than at night. The latter plants also lost three and one-half times more water during the light period than short day plants. The water conservation by short day plants is correlated with conditions of high carbon dioxide dark fixation and effects of its related Crassulacean acid metabolism on stomatal behavior.  相似文献   

4.
The concentration of potassium in the extracellular fluid has been found to stimulate the rate of CO2 fixation by astroglial cells grown in primary culture. Raising the concentration of extracellular potassium increased both the initial rate of formation of the 14C-labeled products of 14CO2 fixation and the final steady-state level of these products within the cells. In contrast, neither veratridine nor L-glutamate affected the rate of CO2 fixation in astroglial cells. The very low rate of CO2 fixation found in primarily neuronal cultures was unaffected by increased extracellular potassium as was CO2 fixation in fibroblasts. When cultured alone, astroglial cells release a large fraction of the 14C-labeled products of CO2 fixation into the surrounding medium. Mixed cultures of astroglia and neurons also fix CO2 but, in contrast to astroglia cultured alone, release only a small fraction of the 14C-labeled products into the culture medium.  相似文献   

5.
Rooted cuttings of Kalanchoë blossfeldiana cv. Feuer Bluteand K. crenatum failed to show a net dark CO2 fixation whenraised in dilute nutrient solution. Dark CO2 fixation (CAM)in these plants was initiated either by increasing the soluteconcentration or lowering the water potential of the nutrientsolution by addition of mannitol (0.11 M and 0.25 M) and carbowax4000 (0.16 M and 0.3 M). Initiation was also brought about byspraying the leaves with B-9 (N,dimethylamino-succinamicacid,300mg1–1) or by addition of CCC (2 chloroethyl trimethylammonium chloride, 300 or 750 mg1–1) to the nutrient medium.Failure of CAM in dilute solution was suggested to be due tolack of accumulation of photosynthates in the leaves. Waterstress and growth retardants brought about reduction of monilizationand/or translocation thereby leading to accumulation of assimilatesin the leaves and to initiation of dark CO2 fixation.  相似文献   

6.
Dark respiration rate increased with temperature between 10and 24°C (Q10 =2.3–2.7). The rate of gross dark CO2fixation (GDF) was affected by temperature, but irregularly.Cumulative GDF was not affected by temperature in this range.Cumulative respiration increased from 17 per cent of cumulativeGDF at 10°C, to 72 per cent at 24°C and was thus responsiblefor the 65 per cent drop in net dark fixation between thesetwo temperatures. and respiration rates were functions of the light intensityin the preceding light period. The function for cumulativeGDFwas of the saturation form, maximum accumulation being obtainedat 12 mW cm–2. It is concluded that both GDF and respirationrates depend on levels of substrates formed during the lightperiod. However, the rate of GDF did not appear to be directlyrelated to the rate of respiration.  相似文献   

7.
Creach E 《Plant physiology》1979,63(4):788-791
When dark 14CO2 fixation in maize leaves was carried out under anaerobic conditions after preillumination in the absence of O2, the 14C incorporation in aspartic acid was transient; its maximum level was very low compared with that of malic acid. The addition of 5% O2 during the dark fixation period increased the total uptake of 14CO2 and the 14C incorporation into aspartic acid.  相似文献   

8.
Creach E 《Plant physiology》1979,64(3):435-438
The enhanced dark CO2 uptake after a preillumination period under varying O2 concentrations has been measured with maize, a C4 plant. For comparison the same study has been conducted with tomato, a C3 plant. Increasing the O2 concentration during preillumination inhibits by 70% the subsequent dark CO2 uptake in tomato but stimulates 2-fold this CO2 uptake in maize. The O2 enhancement of CO2 uptake in maize is due to the enhancement of malate and aspartate synthesis. The percentages of radioactivity incorporated in the C-4 of malate and aspartate vary from 74 to 87% when O2 concentration during preillumination is increased from 0 to 100%.  相似文献   

9.
Fixation of NaH(14)CO(3) by a heavy cell suspension of Streptococcus faecalis var. liquefaciens was studied. Several nutrients, pyridoxal, riboflavine, adenine, uracil, and O(2) stimulated (14)CO(2) incorporation into cells only under conditions that were adequate for synthesis of cell macromolecules. Biotin increased CO(2) incorporation in the absence of extensive synthesis of macromolecules, whereas O(2) inhibited incorporation under these conditions. When (14)CO(2) fixation was occurring during synthesis of macromolecules, 71% of the (14)C was incorporated into cells and 29% occurred extracellularly. Ninety-three per cent of the cellular (14)C was in protein and 5.5% was in nucleic acid. Aspartic acid was the only amino acid in the protein fraction that was radioactive. Eighty-three per cent of the extracellular (14)C was resistant to precipitation by trichloroacetic acid. When (14)CO(2) fixation was occurring in cells that were not carrying on extensive synthesis of macromolecules, 38% of the (14)C was incorporated into cells and 59% occurred in the supernatant fluid. Sixty-nine per cent of the cellular (14)C was in protein, 21% was in low-molecular-weight compounds, and 9% was in nucleic acid. Addition of unlabeled aspartate to the medium inhibited incorporation of (14)CO(2). Based on studies of the rate of (14)CO(2) fixation, the cells fix CO(2) into a pool of intermediates which are either used for synthesis, primarily protein, or are excreted into the medium.  相似文献   

10.
Carbon Dioxide Fixation in Sugarcane Leaves   总被引:34,自引:25,他引:9       下载免费PDF全文
  相似文献   

11.
Carbon Dioxide Fixation by Barley Roots   总被引:1,自引:0,他引:1  
The non-volatile, 80 per cent.ethanol-soluble products of fixationhave been investigated in excised roots, using C14O2 and radiochromatography. The main radioactive compounds separated were malic, citric(or iso-citric), aspartic, and glutamic acids, asparagine andglutamine. Less activity was present in serine, tyrosine, -ketoglutaricacid, and alanine, and in a number of unidentified compounds. The uptake of C14O2 was inhibited by virtually anaerobic conditions. From the above observations it is considered likely that C14is transformed through the reactions of the tricarboxylic acidcycle. C14 in the soluble fraction was markedly increased by maintainingthe root material in water rather than in a nutrient solutionprior to exposure to C14O2 This increase was chiefly in malicacid.  相似文献   

12.
In Kalanchoë blossfeldiana von Poellnitz cv. Tom Thumband cv. Feuer Blute interaction of CO2 fixation with photoperiodicinduction and water stress was examined. It was found that TomThumb raised in dilute culture solution and kept in photoinductivecycles (8 h light and 16 h dark) flowered but failed to showa net dark CO2 fixation. A net dark fixation was observed whenthe concentration of the culture solution was increased or plantswere sprayed with 300 or 750 mg 1–1 CCC or 300 or 2000mg 1–1 B-9. In a non-inductive photoperiod no net darkfixation was observed with these treatments although there wasa tendency for dark fixation to increase. Feuer Blute did not flower in inductive photoperiods when keptin half strength solution. It is suggested that in Tom Thumbboth photoperiodic induction and water stress are required forinitiation of net CO2 dark fixation. In Feuer Blute where CAMis occurring normally photo-induction is sufficient to induceflowering. In half strength solution CO2 dark fixation is disturbedand floral induction also does not occur.  相似文献   

13.
14.
The ammonium induction of the chloroplast-localized NADP-specific glutamate dehydrogenase (NADP-GDH) was shown not to be a light-dependent process per se in Chlorella sorokiniana. In the dark without exogenous organic substrates, the cells synthesized low levels of fully active NADP-GDH, provided endogenous starch reserves had not been depleted. When cells were supplied with exogenous acetate, the rate of induction of NADP-GDH activity per milliliter of culture in the dark was equal to or slightly greater than the rate observed under photosynthetic conditions without an organic carbon source. Glucose supported only a low rate of induction of NADP-GDH activity in the dark. Both acetate and glucose inhibited induction of enzyme activity in the light. The NADP-GDH holoenzyme had at least 7 different electrophoretic forms. These forms differed in net charge and/or molecular weight. Their difference in molecular weight was due to the presence of 2 subunits with similar antigenic properties but different molecular weights (Mr = 55,500 and 53,000; α-and β-subunits, respectively). Depending upon the cultural conditions and length of the induction period, a wide variation was observed in the α:β subunit ratio and in the numbers and sizes of the NADP-GDH holoenzymes.  相似文献   

15.
Intracellular accumulation of inorganic carbon (Ci) and itsfixation in photosynthesis were investigated using siliconeoil layer filtering centrifugation technique with the cellsof Chlorella vulgaris 11h grown under ordinary air. Both CO2and HCO3 were transported into the cells from the reactionmedium and accumulated in the cells, but the rate of transportwas much faster for the former than the latter. 14C-fixationfrom the total transported Ci was much more efficient when CO2was added in the external medium than when HCO3 was added.This indicates that CO2 and HCO3 were not converted tothe common compound in the cells during the initial period ofphotosynthesis. Accumulation of Ci into the cells was much lesssusceptible to low temperature than its fixation. Accumulationof Ci was also observed in the dark. Ethoxyzolamide, an inhibitorof carbonic anhydrase (CA), inhibited the fixation of accumulatedCO2 in the cells, suggesting that CA enhanced the supply ofCO2 to the reaction site of ribulose bisphosphate carboxylasein the stroma. Mechanism for transport and fixation of Ci duringphotosynthesis in low-CO2 cells of C. vulgaris 1lh was proposedfrom these results. (Received March 19, 1986; Accepted June 26, 1986)  相似文献   

16.
Carbon Dioxide Fixation into Oxalacetate in Higher Plants   总被引:16,自引:16,他引:0       下载免费PDF全文
  相似文献   

17.
Dark fixation of CO2 by leaf disks or whole leaves taken fromplants of variety ‘Feuer Blute’ was measured using14CO2. Results indicate that dark fixation by leaf disks isindependent of photoperiodic induction of the plant, but isquantitatively related to the amount of light, over a fairlywide range, to which the leaf is exposed in the single precedinglight period.  相似文献   

18.
Dark CO2 fixation by Anabaena cylindrica was stimulated aboutthree-fold by the addition of NH4Cl to the cells. The 14CO2incorporation experiments showed that 14C is most rapidly incorporatedinto aspartate and then glutamine by adding NH4CI. Glutamineaccumulated predominantly after the addition of NH4Cl showingthat NH4 is incorporated into glutamine by glutamine synthetase.The stimulating effect of NH4Cl on CO2 fixation and amino acidsynthesis was suppressed by methionine sulfoximine, an inhibitorof glutamine synthetase. It was suggested that dark CO2 fixationwas stimulated by the action of glutamine synthesis which isenhanced by ammonia. (Received February 10, 1981; Accepted April 2, 1981)  相似文献   

19.
In free-living Rhizobium japonicum cultures, the stimulatory effect of CO2 on nitrogenase (acetylene reduction) activity was mediated through ribulose bisphosphate carboxylase activity. Two mutant strains (CJ5 and CJ6) of R. japonicum defective in CO2 fixation were isolated by mitomycin C treatment. No ribulose bisphosphate carboxylase activity could be detected in strain CJ6, but a low level of enzyme activity was present in strain CJ5. Mutant strain CJ5 also exhibited pleiotropic effects on carbon metabolism. The mutant strains possessed reduced levels of hydrogen uptake, formate dehydrogenase, and phosphoribulokinase activities, which indicated a regulatory relationship between these enzymes. The CO2-dependent stimulation of nitrogenase activity was not observed in the mutant strains. Both mutant strains nodulated soybean plants and fixed nitrogen at rates comparable to that of the wild-type strain.  相似文献   

20.
Close to redox boundaries, dark carbon fixation by chemoautotrophic bacteria may be a large contributor to overall carbon fixation. Still, little is known about the relative importance of this process in lake systems, in spite the potentially high chemoautotrophic potential of lake sediments. We compared rates of dark carbon fixation, bacterial production and oxygen consumption in sediments from four Swedish boreal and seven tropical Brazilian lakes. Rates were highly variable and dark carbon fixation amounted up to 80% of the total heterotrophic bacterial production. The results indicate that non-photosynthetic carbon fixation can represent a substantial contribution to bacterial biomass production, especially in sediments with low organic matter content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号