首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of protein hybrids composed of variable portions of the amino-terminal residues of the yeast phosphate-repressible acid phosphatase (product of PHO5) and an active fragment of bacterial beta-galactosidase has been constructed. When these PHO5-LACZ hybrids are expressed in a yeast strain carrying an intact chromosomal PHO5 gene, they show a size-dependent interference with the secretion of native acid phosphatase. Hybrid proteins containing approximately 50 residues of acid phosphatase do not affect secretion of native acid phosphatase. Hybrids containing greater than 200 residues of acid phosphatase reduce the amount of secreted acid phosphatase more than by 50%. The interference with secretion is specific for acid phosphatase. The hybrids do not affect secretion of invertase, and do not confer a growth-deficient phenotype on yeast. Both the hybrid proteins and acid phosphatase accumulate in non-glycosylated, membrane-bound forms which are sensitive to proteolysis from the cytoplasmic side of the membrane. The hybrids and accumulated acid phosphatase co-migrate on Percoll density gradients with markers of the endoplasmic reticulum, but not with markers of the Golgi or secretory vesicles. These results suggest that PHO5-LACZ hybrid proteins specifically block secretion of native acid phosphatase by interfering with enzyme after targeting but before translocation across the endoplasmic reticulum.  相似文献   

2.
We have shown that hybrid proteins composed of the yeast repressible acid phosphatase (PHO5) and bacterial beta-galactosidase (lacZ) interfere with secretion of native acid phosphatase (Wolfe, P. B. (1988) J. Biol. Chem. 263, 6908-6915). We now report that PHO5-LacZ hybrid proteins have a more general effect on secretion and prevent translocation of several secreted proteins. Translocation of both the mating pheromone alpha-factor and the vacuolar protease carboxypeptidase Y is partially blocked when PHO5-LacZ hybrids are expressed. Cell fractionation and protease sensitivity indicate that alpha-factor and carboxypeptidase Y accumulate in precursor form on the cytoplasmic surface of the endoplasmic reticulum. Indirect immunofluorescence with antibody directed against beta-galactosidase supports the localization of hybrid proteins to the endoplasmic reticulum. Analysis of the hybrid protein phenotype in vivo and in vitro suggests that the hybrid proteins deplete a soluble factor required for efficient translocation across the endoplasmic reticulum. First, a decrease in the expression of a hybrid protein in vivo decreases its effect on translocation. Second, an in vitro translation/translocation reaction, prepared from a hybrid-bearing strain, is deficient in its ability to translocate prepro-alpha-factor across yeast microsomal membranes. This deficiency is complemented by addition of cytosol prepared from wild type cells. Finally, the hybrid protein phenotype is shown to be independent of the requirement for SSA gene products.  相似文献   

3.
G Berben  M Legrain  F Hilger 《Gene》1988,66(2):307-312
  相似文献   

4.
Phytohemagglutinin (PHA), the major seed lectin of the common bean, Phaseolus vulgaris, accumulates in the parenchyma cells of the cotyledons. It has been previously shown that PHA is cotranslationally inserted into the endoplasmic reticulum with cleavage of the NH2-terminal signal peptide. Two N-linked oligosaccharide side chains are added, one of which is modified to a complex type in the Golgi apparatus. PHA is then deposited in membrane-bound protein storage vacuoles which are biochemically and functionally equivalent to the vacuoles of yeast cells and the lysosomes of animal cells. We wished to determine whether yeast cells would recognize the vacuolar sorting determinant of PHA and target the protein to the yeast vacuole. We have expressed the gene for leukoagglutinating PHA (PHA-L) in yeast under control of the yeast acid phosphatase (PHO5) promoter. Under control of this promoter, PHA-L accumulates to 0.1% of the total yeast protein. PHA-L produced in yeast is glycosylated as expected for a yeast vacuolar glycoprotein. Cell fractionation studies show that PHA-L is efficiently transported to the yeast vacuole. This is the first demonstration that vacuolar targeting information is recognized between two highly divergent species. A small proportion of yeast PHA-L is secreted which may be due to inefficient recognition of the vacuolar sorting signal because of the presence of an uncleaved signal peptide on a subset of the PHA-L polypeptides. This system can now be used to identify the vacuolar sorting determinant of a plant vacuolar protein.  相似文献   

5.
Transgenic plants offer promising alternative for large scale, sustainable production of safe, functional, recombinant proteins of therapeutic and industrial importance. Here, we report the expression of biologically active human alpha-1-antitrypsin in transgenic tomato plants. The 1,182 bp cDNA sequence of human AAT was strategically designed, modified and synthesized to adopt codon usage pattern of dicot plants, elimination of mRNA destabilizing sequences and modifications around 5' and 3' flanking regions of the gene to achieve high-level regulated expression in dicot plants. The native signal peptide sequence was substituted with modified signal peptide sequence of tobacco (Nicotiana tabacum) pathogenesis related protein PR1a, sweet potato (Ipomoea batatas) sporamineA and with dicot-preferred native signal peptide sequence of AAT gene. A dicot preferred translation initiation context sequence, 38 bp alfalfa mosaic virus untranslated region were incorporated at 5' while an endoplasmic reticulum retention signal (KDEL) was incorporated at 3' end of the gene. The modified gene was synthesized by PCR based method using overlapping oligonucleotides. Tomato plants were genetically engineered by nuclear transformation with Agrobacterium tumefaciens harbouring three different constructs pPAK, pSAK and pNAK having modified AAT gene with different signal peptide sequences under the control of CaMV35S duplicated enhancer promoter. Promising transgenic plants expressing recombinant AAT protein upto 1.55% of total soluble leaf protein has been developed and characterized. Plant-expressed recombinant AAT protein with molecular mass of around approximately 50 kDa was biologically active, showing high specific activity and efficient inhibition of elastase activity. The enzymatic deglycosylation established proper glycosylation of the plant-expressed recombinant AAT protein in contrast to unglycosylated rAAT expressed in E. coli ( approximately 45 kDa). Our results demonstrate feasibility for high-level expression of biologically active, glycosylated human alpha-1-antitrypsin in transgenic tomato plants.  相似文献   

6.
7.
8.
9.
The repressible Saccharomyces cerevisiae acid phosphatase (APase) coded by the PHO5 gene is a cell wall protein that follows the yeast secretory pathway. We had previously described the in vivo fate of a multicopy plasmid-encoded modified protein, lacking 15 out of 17 signal peptide amino acids. This modified protein accumulates mainly within the cell as an inactive unglycosylated form. However 30% of this precursor is translocated, glycosylated and dispatched to the cell wall. We establish, in the present report, that this phenomenon did not result from an overproduction of the plasmid encoded protein, since it was also observed in a normal single copy situation. The secretion persisted after a deletion including the single hydrophobic segment present in the N-terminus of the mature protein. The entry of both wild type and mutant APase into the ER was inhibited in sec62 mutants suggesting that the SEC62 gene product would not be implicated in signal peptide recognition.  相似文献   

10.
We demonstrate here the in vitro translocation of yeast acid phosphatase into rough endoplasmic reticulum. The precursor of the repressible acid phosphatase from Saccharomyces cerevisiae encoded by the PHO5 gene, was synthesized in a yeast lysate programmed with in vitro transcribed PHO5 mRNA. In the presence of yeast rough microsomes up to 16% of the acid phosphatase synthesized was found to be translocated into the microsomes, as judged by proteinase resistance, and fully core-glycosylated. The translocation efficiency however, decreased to 3% if yeast rough microsomes were added after synthesis of acid phosphatase had been terminated. When a wheat-germ extract was used for in vitro synthesis, the precursor of acid phosphatase was translocated into canine pancreatic rough microsomes and thereby core-glycosylated in a signal-recognition-particle-dependent manner. Replacing canine with yeast rough microsomes in the wheat-germ translation system, however, resulted in a significant decrease in the ability to translocate and glycosylate the precursor. Translocation and glycosylation were partially restored by a high-salt extract prepared from yeast ribosomes. The results presented here suggest that yeast-specific factors are needed to translocate and glycosylate acid phosphatase efficiently in vitro.  相似文献   

11.
Soluble proteins that reside in the lumen of the endoplasmic reticulum are known to have at their carboxyterminus the tetrapeptides KDEL or HDEL. In yeast and mammalian cells, these tetrapeptides function as endoplasmic reticulum (ER)-retention signals. To determine the effect of an artificially-introduced KDEL sequence at the exact carboxyterminus of a plant secretory protein, we modified the gene of the vacuolar protein phytohemagglutinin-L (PHA) so that the amino-acid sequence would end in LNKDEL rather than LNKIL, and expressed the modified gene in transgenic tobacco with a seed-specific promoter. Analysis of the glycans of PHA showed that most of the control PHA had one endoglycosidase H-sensitive and one endoglycosidase H-resistant glycan, indicating that it had been processed in the Golgi complex. On the other hand, a substantial portion of the PHA-KDEL (about 75% at mid-maturation and 50% in mature seeds) had two endoglycosidase H-sensitive glycans. Phytohemagglutinin with two endoglycosidase H-sensitive glycans is normally found in the ER. Using immunocytochemistry we found that a substantial portion of the PHA-KDEL was present in the ER or accumulated in the nuclear envelope while the remainder was found in the protein storage vacuoles (protein bodies). We interpret these data to indicate that carboxyterminal KDEL functions as an ER retention-retardation signal and causes protein to accumulate in the nuclear envelope as well as in the ER. The incomplete ER retention of this protein which is modified at the exact carboxyterminus may indicate that structural features other than carboxyterminal KDEL are important if complete ER retention is to be achieved.Mention of trademark, proprietary product, or vendor, does not constitute a guarantee or warrenty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable.Abbreviations endoH endoglycosidase H - ER endoplasmic reticulum - Mr relative molecular mass - PHA phytohemagglutinin - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - TBST Tris-buffered saline containing Tween 20 We thank Debra Donaldson for her contribution to the PHA gene constructions. This work has been supported by grants from the National Science Foundation (Cell Biology) and the Department of Energy (DE-FG03-86ER13497) to Maarten J. Chrispeels. The assistance of the staff of the Electron Microscope Laboratory, USDA, Beltsville is gratefully acknowledged.  相似文献   

12.
13.
14.
The nucleotide sequence of the PHO5 gene of the yeast, Saccharomyces cerevisiae, which encodes repressible acid phosphatase (APase) was determined. Comparison of N-terminal amino acid sequence deduced from the nucleotide sequence with that of the purified repressible APase revealed the existence of a putative signal peptide in the precursor protein. The signal peptide was shown to contain 17 amino acid residues and its structural features were quite similar to those of higher eukaryotic and prokaryotic signal peptides. The nucleotide sequence of 5' and 3' noncoding flanking regions of the PHO5 gene are also discussed.  相似文献   

15.
The glucose-regulated protein grp94 is related to heat shock protein hsp90   总被引:12,自引:0,他引:12  
We report the sequence of a cDNA clone that encodes the C-terminal half of the hamster 94 X 10(3) Mr glucose-regulated protein, grp94. The amino acid sequence of this protein is about 50% homologous to Drosophila hsp83 and yeast hsp90, suggesting that grp94 and hsp90 have similar functional properties. Unlike hsp90, grp94 is associated with the endoplasmic reticulum. It has the same C-terminal tetrapeptide as two other luminal endoplasmic reticulum proteins, grp78 and protein disulphide isomerase. We suggest that this sequence forms part of a signal for retention of proteins in the lumen of the endoplasmic reticulum.  相似文献   

16.
Peripheral endoplasmic reticulum membrane proteins residing in the lumen of the endoplasmic reticulum occupy the same space as other secreted proteins. The presence of a four amino acid salvage or retention signal (KDEL-COOH = Lys-Asp-Glu-Leu-COOH) at the carboxyl-terminal end of peripheral membrane proteins has been shown to represent a signal or an essential part of a signal for their retention within the endoplasmic reticulum membrane. In heart and skeletal muscle, a number of sarcoplasmic reticulum proteins have recently been identified which are peripheral membrane proteins. The high-affinity calcium-binding protein (55 kilodaltons (kDa] appears to conform to the above described mechanisms and contains the KDEL carboxyl-terminal tetrapeptide. Thyroid hormone binding protein is present in the sarcoplasmic reticulum, in addition to its endoplasmic reticulum location, and has a modified but related tetrapeptide sequence (RDEL = Arg-Asp-Glu-Leu), which also probably functions as the retention signal. Calsequestrin and a 53-kDa glycoprotein, two other peripheral membrane proteins residing in the lumen of the sarcoplasmic reticulum, do not contain the KDEL retention signal. The sarcoplasmic reticulum may have developed a unique retention mechanism(s) for these muscle-specific proteins.  相似文献   

17.
Smooth and rough endoplasmic reticulum from rat liver and hepatomas exhibited endogenous protein kinase activity independent of adenosine 3':5'-monophosphate. The phosphorylation of smooth membranes by this process was consistently higher than that of rough membranes. When histone was added along with the smooth endoplasmic reticulum, cyclic AMP stimulated protein phosphorylation. Analysis of membrane-phosphorylated proteins by gel electrophoresis showed 5 major phosphorylated bands with estimated molecular weights of 155 000, 62 000, 50 000, 46 000 and 43 000, whereas major bands having estimated molecular weights of 62 000, 50 000 and 43 000 were found in membranes of the smooth endoplasmic reticulum of the Morris hepatoma 5123 C. Since previous studies in this and other laboratories have demonstrated the similarity of the protein components of membranes of the endoplasmic reticulum of normal liver and hepatoma, our findings indicate an inability of the protein kinase of hepatoma intracellular membranes to phosphorylate protein species that are found in membranes of both liver and the neoplasm.  相似文献   

18.
Lee S  Park B  Ahn K 《Journal of virology》2003,77(3):2147-2156
US3 of human cytomegalovirus is an endoplasmic reticulum resident transmembrane glycoprotein that binds to major histocompatibility complex class I molecules and prevents their departure. The endoplasmic reticulum retention signal of the US3 protein is contained in the luminal domain of the protein. To define the endoplasmic reticulum retention sequence in more detail, we have generated a series of deletion and point mutants of the US3 protein. By analyzing the rate of intracellular transport and immunolocalization of the mutants, we have identified Ser58, Glu63, and Lys64 as crucial for retention, suggesting that the retention signal of the US3 protein has a complex spatial arrangement and does not comprise a contiguous sequence of amino acids. We also show that a modified US3 protein with a mutation in any of these amino acids maintains its ability to bind class I molecules; however, such mutated proteins are no longer retained in the endoplasmic reticulum and are not able to block the cell surface expression of class I molecules. These findings indicate that the properties that allow the US3 glycoprotein to be localized in the endoplasmic reticulum and bind major histocompatibility complex class I molecules are located in different parts of the molecule and that the ability of US3 to block antigen presentation is due solely to its ability to retain class I molecules in the endoplasmic reticulum.  相似文献   

19.
Calreticulin is the major high capacity, low affinity Ca2+ binding protein localized within the endoplasmic reticulum. It functions as a reservoir for triggered release of Ca2+ by the endoplasmic reticulum and is thus integral to eukaryotic signal transduction pathways involving Ca2+ as a second messenger. The early branching photosynthetic protist Euglena gracilis is shown to possess calreticulin as its major high capacity Ca2+ binding protein. The protein was purified, microsequenced and cloned. Like its homologues from higher eukaryotes, calreticulin from Euglena possesses a short signal peptide for endoplasmic reticulum import and the C-terminal retention signal KDEL, indicating that these components of the eukaryotic protein routing apparatus were functional in their present form prior to divergence of the euglenozoan lineage. A gene phytogeny for calreticulin and calnexin sequences in the context of eukaryotic homologues indicates i) that these Ca2+ binding endoplasmic reticulum proteins descend from a gene duplication that occurred in the earliest stages of eukaryotic evolution and furthermore iii that Euglenozoa express the calreticulin protein of the kinetoplastid (trypanosomes and their relatives) lineage, rather than that of the eukaryotic chlorophyte which gave rise to Euglena's plastids. Evidence for conservation of endoplasmic reticulum routing and Ca2+ binding function of calreticulin from Euglena traces the functional history of Ca2+ second messenger signal transduction pathways deep into eukaryotic evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号