首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Severe myoclonic epilepsy of infancy (SMEI) is a rare disorder that occurs in isolated patients. The disease is characterized by generalized tonic, clonic, and tonic-clonic seizures that are initially induced by fever and begin during the first year of life. Later, patients also manifest other seizure types, including absence, myoclonic, and simple and complex partial seizures. Psychomotor development stagnates around the second year of life. Missense mutations in the gene that codes for a neuronal voltage-gated sodium-channel alpha-subunit (SCN1A) were identified in families with generalized epilepsy with febrile seizures plus (GEFS+). GEFS+ is a mild type of epilepsy associated with febrile and afebrile seizures. Because both GEFS+ and SMEI involve fever-associated seizures, we screened seven unrelated patients with SMEI for mutations in SCN1A. We identified a mutation in each patient: four had frameshift mutations, one had a nonsense mutation, one had a splice-donor mutation, and one had a missense mutation. All mutations are de novo mutations and were not observed in 184 control chromosomes.  相似文献   

2.
SCN1A is the most relevant epilepsy gene. Mutations of SCN1A generate phenotypes ranging from the extremely severe form of Dravet syndrome (DS) to a mild form of generalized epilepsy with febrile seizures plus (GEFS+). Mosaic SCN1A mutations have been identified in rare familial DS. It is suspected that mosaic mutations of SCN1A may cause other types of familial epilepsies with febrile seizures (FS), which are more common clinically. Thus, we screened SCN1A mutations in 13 families with partial epilepsy with antecedent febrile seizures (PEFS+) using denaturing high-performance liquid chromatography and sequencing. The level of mosaicism was further quantified by pyrosequencing. Two missense SCN1A mutations with mosaic origin were identified in two unrelated families, accounting for 15.4% (2/13) of the PEFS+ families tested. One of the mosaic carriers with ~25.0% mutation of c.5768A>G/p.Q1923R had experienced simple FS; another with ~12.5% mutation of c.4847T>C/p.I1616T was asymptomatic. Their heterozygous children had PEFS+. Recurrent transmission occurred in both families, as noted in most of the families with germline mosaicism reported previously. The two mosaic mutations identified in this study are less destructive missense, compared with the more destructive truncating and splice-site mutations identified in the majority of previous studies. This is the first report of mosaic SCN1A mutations in families with probands that do not exhibit DS, but manifest only a milder phenotype. Therefore, such families with mild cases should be approached with caution in genetic counseling and the possibility of mosaicism origin associated with high recurrence risk should be excluded.  相似文献   

3.
Generalized epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome characterized by the presence of febrile and afebrile seizures. The first gene, GEFS1, was mapped to chromosome 19q and was identified as the sodium-channel beta1-subunit, SCN1B. A second locus on chromosome 2q, GEFS2, was recently identified as the sodium-channel alpha1-subunit, SCN1A. Single-stranded conformation analysis (SSCA) of SCN1A was performed in 53 unrelated index cases to estimate the frequency of mutations in patients with GEFS+. No mutations were found in 17 isolated cases of GEFS+. Three novel SCN1A mutations-D188V, V1353L, and I1656M-were found in 36 familial cases; of the remaining 33 families, 3 had mutations in SCN1B. On the basis of SSCA, the combined frequency of SCN1A and SCN1B mutations in familial cases of GEFS+ was found to be 17%.  相似文献   

4.
Febrile seizures (FS) represent the most common seizure disorder in childhood and contribution of a genetic predisposition has been clearly proven. In some families FS is associated with a wide variety of afebrile seizures. Generalized epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome with a spectrum of phenotypes including FS, atypical febrile seizures (FS+) and afebrile generalized and partial seizures. Mutations in the genes SCN1B, SCN1A and GABRG2 were identified in GEFS+ families. GEFS+ is genetically heterogeneous and mutations in these three genes were detected in only a minority of the families. We performed a 10 cM density genome-wide scan in a multigenerational family with febrile seizures and epilepsy and obtained a maximal multipoint LOD score of 3.12 with markers on chromosome 5q14.3-q23.1. Fine mapping and segregation analysis defined a genetic interval of ≈33 cM between D5S2103 and D5S1975. This candidate region overlapped with a previously reported locus for febrile seizures (FEB4) in the Japanese population, in which MASS1 was proposed as disease gene. Mutation analysis of the exons and exon–intron boundaries of MASS1 in our family did not reveal a disease causing mutation. Our linkage data confirm for the first time that a locus on chromosome 5q14-q23 plays a role in idiopathic epilepsies. However, our mutation data is negative and do not support a role for MASS1 suggesting that another gene within or near the FEB4 locus might exist.  相似文献   

5.
Generalized epilepsy with febrile seizures plus (GEFS+) is a recently recognized but relatively common form of inherited childhood-onset epilepsy with heterogeneous epilepsy phenotypes. We genotyped 41 family members, including 21 affected individuals, to localize the gene causing epilepsy in a large family segregating an autosomal dominant form of GEFS+. A genomewide search examining 197 markers identified linkage of GEFS+ to chromosome 2, on the basis of an initial positive LOD score for marker D2S294 (Z=4.4, recombination fraction [straight theta] = 0). A total of 24 markers were tested on chromosome 2q, to define the smallest candidate region for GEFS+. The highest two-point LOD score (Zmax=5.29; straight theta=0) was obtained with marker D2S324. Critical recombination events mapped the GEFS+ gene to a 29-cM region flanked by markers D2S156 and D2S311, with the idiopathic generalized epilepsy locus thereby assigned to chromosome 2q23-q31. The existence of the heterogeneous epilepsy phenotypes in this kindred suggests that seizure predisposition determined by the GEFS+ gene on chromosome 2q could be modified by other genes and/or by environmental factors, to produce the different seizure types observed.  相似文献   

6.
7.
We report a clinical and genetic study of a family with a phenotype resembling generalized epilepsy with febrile seizures plus (GEFS+), described by Berkovic and colleagues. Patients express a very variable phenotype combining febrile seizures, generalized seizures often precipitated by fever at age >6 years, and partial seizures, with a variable degree of severity. Linkage analysis has excluded both the beta 1 subunit gene (SCN1B) of a voltage-gated sodium (Na+) channel responsible for GEFS+ and the two loci, FEB1 and FEB2, previously implicated in febrile seizures. A genomewide search, under the assumption of incomplete penetrance at 85% and a phenocopy rate of 5%, permitted identification of a new locus on chromosome 2q21-q33. The maximum pairwise LOD score was 3.00 at recombination fraction 0 for marker D2S2330. Haplotype reconstruction defined a large (22-cM) candidate interval flanked by markers D2S156 and D2S2314. Four genes coding for different isoforms of the alpha-subunit voltage-gated sodium channels (SCN1A, SCN2A1, SCN2A2, and SCN3A) located in this region are strong candidates for the disease gene.  相似文献   

8.
Molecular basis of an inherited epilepsy   总被引:35,自引:0,他引:35  
Lossin C  Wang DW  Rhodes TH  Vanoye CG  George AL 《Neuron》2002,34(6):877-884
Epilepsy is a common neurological condition that reflects neuronal hyperexcitability arising from largely unknown cellular and molecular mechanisms. In generalized epilepsy with febrile seizures plus, an autosomal dominant epilepsy syndrome, mutations in three genes coding for voltage-gated sodium channel alpha or beta1 subunits (SCN1A, SCN2A, SCN1B) and one GABA receptor subunit gene (GABRG2) have been identified. Here, we characterize the functional effects of three mutations in the human neuronal sodium channel alpha subunit SCN1A by heterologous expression with its known accessory subunits, beta1 and beta2, in cultured mammalian cells. SCN1A mutations alter channel inactivation, resulting in persistent inward sodium current. This gain-of-function abnormality will likely enhance excitability of neuronal membranes by causing prolonged membrane depolarization, a plausible underlying biophysical mechanism responsible for this inherited human epilepsy.  相似文献   

9.
Recent findings from studies of two families have shown that mutations in the GABA(A)-receptor gamma2 subunit are associated with generalized epilepsies and febrile seizures. Here we describe a family that has generalized epilepsy with febrile seizures plus (GEFS(+)), including an individual with severe myoclonic epilepsy of infancy, in whom a third GABA(A)-receptor gamma2-subunit mutation was found. This mutation lies in the intracellular loop between the third and fourth transmembrane domains of the GABA(A)-receptor gamma2 subunit and introduces a premature stop codon at Q351 in the mature protein. GABA sensitivity in Xenopus laevis oocytes expressing the mutant gamma2(Q351X) subunit is completely abolished, and fluorescent-microscopy studies have shown that receptors containing GFP-labeled gamma2(Q351X) protein are retained in the lumen of the endoplasmic reticulum. This finding reinforces the involvement of GABA(A) receptors in epilepsy.  相似文献   

10.
Voltage-gated sodium channels are required for the initiation and propagation of action potentials. Mutations in the neuronal voltage-gated sodium channel SCN1A are associated with a growing number of disorders including generalized epilepsy with febrile seizures plus (GEFS+),7 severe myoclonic epilepsy of infancy, and familial hemiplegic migraine. To gain insight into the effect of SCN1A mutations on neuronal excitability, we introduced the human GEFS+ mutation SCN1A-R1648H into the orthologous mouse gene. Scn1aRH/RH mice homozygous for the R1648H mutation exhibit spontaneous generalized seizures and premature death between P16 and P26, whereas Scn1aRH/+ heterozygous mice exhibit infrequent spontaneous generalized seizures, reduced threshold and accelerated propagation of febrile seizures, and decreased threshold to flurothyl-induced seizures. Inhibitory cortical interneurons from P5-P15 Scn1aRH/+ and Scn1aRH/RH mice demonstrated slower recovery from inactivation, greater use-dependent inactivation, and reduced action potential firing compared with wild-type cells. Excitatory cortical pyramidal neurons were mostly unaffected. These results suggest that this SCN1A mutation predominantly impairs sodium channel activity in interneurons, leading to decreased inhibition. Decreased inhibition may be a common mechanism underlying clinically distinct SCN1A-derived disorders.  相似文献   

11.
Mutations in genes encoding neuronal voltage-gated sodium channel subunits have been linked to inherited forms of epilepsy. The majority of mutations (>100) associated with generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI) occur in SCN1A encoding the NaV1.1 neuronal sodium channel alpha-subunit. Previous studies demonstrated functional heterogeneity among mutant SCN1A channels, revealing a complex relationship between clinical and biophysical phenotypes. To further understand the mechanisms responsible for mutant SCN1A behavior, we performed a comprehensive analysis of the single-channel properties of heterologously expressed recombinant WT-SCN1A channels. Based on these data, we then determined the mechanisms for dysfunction of two GEFS+-associated mutations (R1648H, R1657C) both affecting the S4 segment of domain 4. WT-SCN1A has a slope conductance (17 pS) similar to channels found in native mammalian neurons. The mean open time is approximately 0.3 ms in the -30 to -10 mV range. The R1648H mutant, previously shown to display persistent sodium current in whole-cell recordings, exhibited similar slope conductance but had an increased probability of late reopening and a subfraction of channels with prolonged open times. We did not observe bursting behavior and found no evidence for a gating mode shift to explain the increased persistent current caused by R1648H. Cells expressing R1657C exhibited conductance, open probability, mean open time, and latency to first opening similar to WT channels but reduced whole-cell current density, suggesting decreased number of functional channels at the plasma membrane. In summary, our findings define single-channel properties for WT-SCN1A, detail the functional phenotypes for two human epilepsy-associated sodium channel mutants, and clarify the mechanism for increased persistent sodium current induced by the R1648H allele.  相似文献   

12.
Mutations in the voltage‐gated sodium channel gene SCN1A are responsible for a number of epilepsy disorders, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. In addition, dysfunction in SCN1A is increasingly being linked to neuropsychiatric abnormalities, social deficits and cognitive disabilities. We have previously reported that mice heterozygous for the SCN1A R1648H mutation identified in a GEFS+ family have infrequent spontaneous seizures, increased susceptibility to chemically and hyperthermia‐induced generalized seizures and sleep abnormalities. In this study, we characterized the behavior of heterozygous mice expressing the SCN1A R1648H mutation (Scn1aRH/+) and the effect of stress on spontaneous and induced seizures. We also examined the effect of the R1648H mutation on the hypothalamic–pituitary–adrenal (HPA) axis response. We confirmed our previous finding that Scn1aRH/+ mutants are hyperactive, and also identified deficits in social behavior, spatial memory, cued fear conditioning, pre‐pulse inhibition and risk assessment. Furthermore, while exposure to a stressor did increase seizure susceptibility, the effect seen in the Scn1aRH/+ mutants was similar to that seen in wild‐type littermates. In addition, Scn1a dysfunction does not appear to alter HPA axis function in adult animals. Our results suggest that the behavioral abnormalities associated with Scn1a dysfunction encompass a wider range of phenotypes than previously reported and factors such as stress exposure may alter disease severity in patients with SCN1A mutations.  相似文献   

13.
摘要 目的:总结并分析SCN2A基因突变引起的儿童神经系统疾病相关表型谱特点。方法:采用回顾性研究,收集2018年6月至2021年6月在上海交通大学医学院附属上海儿童医学中心神经内科诊治的患儿,并经二代基因测序检测,纳入SCN2A基因突变者,研究并总结患儿神经系统临床表型特点。结果:共纳入13例SCN2A突变患儿,包括新生突变9例和遗传性突变4例。其中11例患儿伴有癫痫发作,发作年龄为1日龄~1岁11月龄,4例在新生儿期起病 (36%),1~3 月龄起病2例(18%),4~12月龄起病2例(18%),1岁后起病3例(27%);发作类型中强直阵挛发作、痉挛发作、局灶性发作均各有4例(36%),阵挛发作1例(9%)。另有2例无癫痫发作的患儿,1例表现为全面性发育迟缓,另一例表现为发育迟缓合并孤独症谱系疾病。11例癫痫患儿中,丛集性发作患儿10例。遗传性突变4例患儿中2例智力、运动发育正常;9例新生突变的患儿中8例伴有运动、智力发育落后,1例发育正常。11例癫痫患儿表型中良性家族性新生儿癫痫1例,新生儿惊厥2例,婴儿痉挛症2例,不能分类的早发性癫痫性脑病3例,儿童期起病的癫痫性脑病2例,热厥附加症1例。结论:SCN2A基因突变引起的儿童神经系统疾病以癫痫表现居多、癫痫表型谱广,少数表现为不伴癫痫发作的发育迟缓和孤独症谱系疾病。  相似文献   

14.
Generalized epilepsy with febrile seizures plus (GEFS+) is an early onset febrile epileptic syndrome with therapeutic responsive (a)febrile seizures continuing later in life. Dravet syndrome (DS) or severe myoclonic epilepsy of infancy has a complex phenotype including febrile generalized or hemiclonic convulsions before the age of 1, followed by intractable myoclonic, complex partial, or absence seizures. Both diseases can result from mutations in the Nav1.1 sodium channel, and initially, seizures are typically triggered by fever. We previously characterized two Nav1.1 mutants—R859H (GEFS+) and R865G (DS)—at room temperature and reported a mixture of biophysical gating defects that could not easily predict the phenotype presentation as either GEFS+ or DS. In this study, we extend the characterization of Nav1.1 wild-type, R859H, and R865G channels to physiological (37°C) and febrile (40°C) temperatures. At physiological temperature, a variety of biophysical defects were detected in both mutants, including a hyperpolarized shift in the voltage dependence of activation and a delayed recovery from fast and slow inactivation. Interestingly, at 40°C we also detected additional gating defects for both R859H and R865G mutants. The GEFS+ mutant R859H showed a loss of function in the voltage dependence of inactivation and an increased channel use-dependency at 40°C with no reduction in peak current density. The DS mutant R865G exhibited reduced peak sodium currents, enhanced entry into slow inactivation, and increased use-dependency at 40°C. Our results suggest that fever-induced temperatures exacerbate the gating defects of R859H or R865G mutants and may predispose mutation carriers to febrile seizures.  相似文献   

15.
We report the identification of a new locus for generalized epilepsy with febrile seizures plus (GEFS+). Six family members manifested isolated typical febrile seizures (FS), and five had typical FS associated with generalized epilepsy (FS+, generalized tonic/clonic seizures). Afebrile seizures occurred from childhood until the teenage years. The maximum two-point LOD score was 3.99 for markers D2S294 and D2S2314. Flanking markers place the GEFS+ locus between D2S141 and D2S116, with multipoint analysis favoring the 13-cM interval spanned by D2S294 and D2S364. This locus is the second GEFS+ locus to be reported, which suggests that this syndrome is genetically heterogeneous.  相似文献   

16.
The SCN1A gene with 1274 point mutations in the coding regions or genomic rearrangements is the most clinically relevant epilepsy gene. Recent studies have demonstrated that variations in the noncoding regions are potentially associated with epilepsies, but no distinct mutation has been reported. We sequenced the 5′ upstream region of SCN1A in 166 patients with epilepsy and febrile seizures who were negative for point mutations in the coding regions or genomic rearrangements. A heterozygous mutation h1u-1962 T?>?G was identified in a patient with partial epilepsy and febrile seizures, which was aggravated by oxcarbazepine. This mutation was transmitted from the patient’s asymptomatic mother and not found in the 110 normal controls. h1u-1962 T?>?G was located upstream the most frequently used noncoding exon and within the promoter sequences. Further experiments showed that this mutation decreased the promoter activity by 42.1 % compared with that of the paired haplotype (P?<?0.001). In contrast to the null expression that results in haploinsufficiency and severe phenotype, this mutation caused relatively less impairment, explaining the mild epilepsy with incomplete penetrance. The antiepileptic drug-induced seizure aggravation in this patient suggests clinical attention for mutations or variations in noncoding regions that may affect SCN1A expression.  相似文献   

17.
Summary Idiopathic generalized epilepsies (IGEs) are the most common types of epilepsy in childhood and adolescence. A variety of data suggest that IGEs have a predominant genetic etiology. Recently, a number of gene mutations have been found to be associated with various types of epilepsy in mainly the Caucasian populations. The objective of this study was to investigate the association of three different candidate genes with IGE in Kuwaiti Arab children. This study includes 123 Kuwaiti patients with a confirmed diagnosis of epilepsy. Most of the patients have had a diagnostic EEG with generalized spike-wave discharges (GSWs). All patients were evaluated by using a validated seizure questionnaire. The clinical type of epilepsy was determined by a trained neurologist/pediatrician. The study also include 100 controls, the control subjects were children which did not have any history of neurological disorders. Blood samples were collected from all patients and control subjects after taking informed consent. DNA was isolated and analyzed by molecular methods. A FokI polymorphism in neuronal nicotinic acetylcholine receptor alpha-4 subunit (CHRNA4) gene was detected by PCR-RFLP method. A missense mutation (Ser248Phe) in CHRNA4 gene was analyzed by PCR-RFLP using HpaII. A C121W mutation in sodium-channel beta-1 subunit (SCN1B) gene was screened by a PCR-RFLP method using HinPI. A 2-bp deletion in Cystatin B gene was detected by PCR-RFLP using XcmI. The incidence of three FokI polymorphism genotypes in Kuwaiti IGE patients was 1,1 (85%), 1,2 (14%) and 2,2 (1%) respectively. The missense mutation Ser248Phe of CHRNA4 gene was not detected at all in Kuwaiti IGE patients. The C387G transversion resulting in C121W change in third exon of the SCN1B gene was detected in 3/123 patients (2%). The patients carrying this mutation also exhibited febrile seizures. The incidence of 2 bp deletion in the cystatin B gene was found to be 4% (5/123 IGE patients). The data obtained from molecular analysis show a lack of association between three candidate genes and clinical expression of IGE in Kuwaiti Arab children. This is completely different from the findings reported from Caucasian populations of France, Australia and USA in which case a strong association has been reported between IGE and these genes. To whom corresspondence should be addressed. Tel: +965-5319486; Fax: +965-5338940; E-mail: haider@hsc.edu.kw  相似文献   

18.
AK Kwong  CW Fung  SY Chan  VC Wong 《PloS one》2012,7(7):e41802

Background

Dravet syndrome is a severe form of epilepsy. Majority of patients have a mutation in SCN1A gene, which encodes a voltage-gated sodium channel. A recent study has demonstrated that 16% of SCN1A-negative patients have a mutation in PCDH19, the gene encoding protocadherin-19. Mutations in other genes account for only a very small proportion of families. TSPYL4 is a novel candidate gene within the locus 6q16.3-q22.31 identified by linkage study.

Objective

The present study examined the mutations in epileptic Chinese children with emphasis on Dravet syndrome.

Methods

A hundred children with severe epilepsy were divided into Dravet syndrome and non-Dravet syndrome groups and screened for SCN1A mutations by direct sequencing. SCN1A-negative Dravet syndrome patients and patients with phenotypes resembling Dravet syndrome were checked for PCDH19 and TSPYL4 mutations.

Results

Eighteen patients (9 males, 9 females) were diagnosed to have Dravet syndrome. Among them, 83% (15/18) had SCN1A mutations including truncating (7), splice site (2) and missense mutations (6). The truncating/splice site mutations were associated with moderate to severe degree of intellectual disability (p<0.05). During the progression of disease, 73% (11/15) had features fitting into the diagnostic criteria of autism spectrum disorder and 53% (8/15) had history of vaccination-induced seizures. A novel PCDH19 p.D377N mutation was identified in one SCN1A-negative female patient with Dravet syndrome and a known PCDH19 p.N340S mutation in a female non-Dravet syndrome patient. The former also inherited a TSPYL4 p.G60R variant.

Conclusion

A high percentage of SCN1A mutations was identified in our Chinese cohort of Dravet syndrome patients but none in the rest of patients. We demonstrated that truncating/splice site mutations were linked to moderate to severe intellectual disability in these patients. A de novo PCDH19 missense mutation together with an inherited TSPYL4 missense variant were identified in a patient with Dravet syndrome.  相似文献   

19.
Despite an established link between epilepsy and sleep behavior, it remains unclear how specific epileptogenic mutations affect sleep and subsequently influence seizure susceptibility. Recently, Sun et al. (2012) created a fly knock-in model of human generalized epilepsy with febrile seizures plus (GEFS+), a wide-spectrum disorder characterized by fever-associated seizing in childhood and lifelong affliction. GEFS+ flies carry a disease-causing mutation in their voltage-gated sodium channel (VGSC) gene and display semidominant heat-induced seizing, likely due to reduced GABAergic inhibitory activity at high temperature. Here, we show that at room temperature the GEFS+ mutation dominantly modifies sleep, with mutants exhibiting rapid sleep onset at dusk and increased nighttime sleep as compared to controls. These characteristics of GEFS+ sleep were observed regardless of sex, mating status, and genetic background. GEFS+ mutant sleep phenotypes were more resistant to pharmacologic reduction of GABA transmission by carbamazepine (CBZ) than controls, and were mitigated by reducing GABAA receptor expression specifically in wake-promoting pigment dispersing factor (PDF) neurons. These findings are consistent with increased GABAergic transmission to PDF neurons being mainly responsible for the enhanced nighttime sleep of GEFS+ mutants. Additionally, analyses under other light conditions suggested that the GEFS+ mutation led to reduced buffering of behavioral responses to light on and off stimuli, which contributed to characteristic GEFS+ sleep phenotypes. We further found that GEFS+ mutants had normal circadian rhythms in free-running dark conditions. Interestingly, the mutants lacked a homeostatic rebound following mechanical sleep deprivation, and whereas deprivation treatment increased heat-induced seizure susceptibility in control flies, it unexpectedly reduced seizure activity in GEFS+ mutants. Our study has revealed the sleep architecture of a Drosophila VGSC mutant that harbors a human GEFS+ mutation, and provided unique insight into the relationship between sleep and epilepsy.  相似文献   

20.

Background

Mutations in the PRRT2 gene have been identified as the major cause of benign familial infantile epilepsy (BFIE), paroxysmal kinesigenic dyskinesia (PKD) and infantile convulsions with paroxysmal choreoathetosis/dyskinesias (ICCA). Here, we analyzed the phenotypes and PRRT2 mutations in Chinese families with BFIE and ICCA.

Methods

Clinical data were collected from 22 families with BFIE and eight families with ICCA. PRRT2 mutations were screened using PCR and direct sequencing.

Results

Ninety-five family members were clinically affected in the 22 BFIE families. During follow-up, two probands had one seizure induced by diarrhea at the age of two years. Thirty-one family members were affected in the eight ICCA families, including 11 individuals with benign infantile epilepsy, nine with PKD, and 11 with benign infantile epilepsy followed by PKD. Two individuals in one ICCA family had PKD or ICCA co-existing with migraine. One affected member in another ICCA family had experienced a fever-induced seizure at 7 years old. PRRT2 mutations were detected in 13 of the 22 BFIE families. The mutation c.649_650insC (p.R217PfsX8) was found in nine families. The mutations c.649delC (p.R217EfsX12) and c.904_905insG (p.D302GfsX39) were identified in three families and one family, respectively. PRRT2 mutations were identified in all eight ICCA families, including c.649_650insC (p.R217PfsX8), c.649delC (p.R217EfsX12), c.514_517delTCTG (p.S172RfsX3) and c.1023A?>?T (X341C). c.1023A?>?T is a novel mutation predicted to elongate the C-terminus of the protein by 28 residues.

Conclusions

Our data demonstrated that PRRT2 is the major causative gene of BFIE and ICCA in Chinese families. Site c.649 is a mutation hotspot: c.649_650insC is the most common mutation, and c.649delC is the second most common mutation in Chinese families with BFIE and ICCA. As far as we know, c.1023A?>?T is the first reported mutation in exon 4 of PRRT2. c.649delC was previously reported in PKD, ICCA and hemiplegic migraine families, but we further detected it in BFIE-only families. c.904_905insG was reported in an ICCA family, but we identified it in a BFIE family. c.514_517delTCTG was previously reported in a PKD family, but we identified it in an ICCA family. Migraine and febrile seizures plus could co-exist in ICCA families.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号