首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environmental pollutant 3-nitrofluoranthene is metabolized in vitro and in vivo to several products including the phenolic metabolites 3-nitrofluoranthen-6-ol (3NF-6-ol), 3-nitrofluoranthen-8-ol (3NF-8-ol), and 3-nitrofluoranthen-9-ol (3NF-9-ol). Similarly, 1-nitropyrene is metabolized to the phenolic metabolites 1-nitropyren-3-ol (1NP-3-ol), 1-nitropyren-6-ol (1NP-6-ol), and 1-nitropyren-8-ol (1NP-8-ol). The mutagenicity of these compounds was investigated using strains of Salmonella typhimurium deficient in either certain nitroreductase or the aryl hydroxylamine O-esterificase. In TA98, 3-nitrofluoranthene and 3NF-8-ol were equally mutagenic at approximately 103 revertants/nmole while 3NF-6-ol and 3NF-9-ol were 10-fold less mutagenic. 1-Nitropyrene and 1NP-3-ol likewise were equally mutagenic at approximately 700 revertants/nmole and 1NP-6-ol and 1NP-8-ol were 100-fold less mutagenic. The mutagenicity of 1-nitropyrene was dependent on the ‘classical nitroreductase’ which is absent in TA98NR, and that of 3-nitrofluoranthene, 3NF-8-ol, and 1NP-3-ol was less dependent on this nitroreductase. Using TA98/1,8DNP6, it was determined that the mutagenicity of 3-nitrofluoranthene, 3NF-8-ol, and 1NP-3-ol but not 1-nitropyrene was dependent on the presence of the O-esterificase. 3-Nitrofluoranthene and 3NF-8-ol were mutagenic in TA100, while 3NF-6-ol and 3NF-9-ol were considerably less mutagenic. 3-Nitrofluoranthene was not mutagenic in TA100NR nor in TA100-Tn5-1,8-DNP1012. None of the phenolic metabolites of 3-nitrofluoranthene were mutagenic in TA100-Tn5-1,8DNP1012 indicating a strong dependence for mutagenicity of the O-esterificase of the 1,8-dinitropyrene nitroreductase which is absent in this strain. These results are discussed in view of possible mechanisms for the differences in the mutagenicity of the phenolic metabolites of these two nitrated arenes.  相似文献   

2.
The mutations and DNA adducts produced by the environmental pollutant 2-nitropyrene were examined in Salmonella typhimurium tester strains. 2-Nitropyrene was a stronger mutagen than its extensively studied structural isomer 1-nitropyrene in strains TA96, TA97, TA98, TA100, TA102, TA104 and TA1538. Both 1- and 2-nitropyrene were essentially inactive in TA1535. The mutagenicity of 1- and 2-nitropyrene in TA98 was much higher than in TA98NR and the activity of these compounds in TA100 was much higher than in TA100NR. While 1-nitropyrene exhibited similar mutagenicity in strains TA98 and TA98/1,8-DNP6, the mutagenicity of 2-nitropyrene in TA98/1,8-DNP6 was much lower than in TA98. Analysis of DNA from TA96 and TA104 incubated with 2-nitropyrene indicated the presence of two adducts, N-(deoxyguanosin-8-yl)-2-aminopyrene and N-deoxyadenosin-8-yl)-2-aminopyrene. The results suggest that 2-nitropyrene is metabolized by bacterial nitroreductase(s) to N-hydroxy-2-aminopyrene, and possibly by activation to a highly mutagenic O-acetoxy ester. DNA adduct formation with deoxyguanosine and deoxyadenosine correlates with the mutagenicity of 2-nitropyrene in tester strains possessing both G:C and A:T mutational targets.  相似文献   

3.
Most of the positional isomers of mono-, di-, tri- and tetranitrobiphenyls were synthesized and assayed for their mutagenicity in Salmonella typhimurium strains TA98, TA98NR and TA98/1,8DNP6 in the absence of S9 mix. In mono- and dinitrobiphenyls, the structure requirements favoring mutagenic activity are the presence of a nitro group at the 4-position and its absence at the 2-position. TA98 and TA98/1,8DNP6 were reverted by 2-position-free 4-nitro analogues, but TA98NR was not reverted. The results suggest that direct-acting mutagenicity involves the reduction of the nitro group by bacterial nitroreductase but does not involve specific esterification enzymes. Some of the tri- and tetranitrobiphenyls e.g. 3,4,3'-, 3,4,4'-, 3,4,3',4'- and 3,4,2',4'-derivatives reverted not only TA98 and TA98/1,8DNP6 but also TA98NR. Those derivatives commonly have 2 nitro groups at an adjoining position (3,4-dinitro group), whereas 2,4,2',4'-tetranitrobiphenyl, which has strong potency not only in TA98 and TA98/1,8DNP6 but also in TA98NR, possesses 2 nitro groups at the 2-position of each benzene ring.  相似文献   

4.
The mutagenicity and activation requirements of purified synthetic derivatives and potential metabolites of 1-nitropyrene have been characterized in the Ames plate incorporation assay with the Salmonella tester strains TA98, TA98NR and TA98/1,8-DNP6, in the presence or absence of exogenous metabolic activation provided by Aroclor-induced rat liver S9. All the compounds tested (1-aminopyrene, N-acetyl-1-aminopyrene, N-hydroxy-N-acetyl-1-aminopyrene, 3-hydroxy-1-nitropyrene, 6-hydroxy-1-nitropyrene, and 8-hydroxy-1-nitropyrene) exhibited mutagenic activity under one or more assay conditions. 1-Nitropyrene was metabolized to 3-hydroxy-1-nitropyrene, 6- or 8-hydroxy-1-nitropyrene, 1-aminopyrene, N-acetyl-1-aminopyrene and other unidentified products (including some bound to protein) by an S9 preparation analogous to that used for exogenous metabolic activation in the Ames assay. 1-Nitropyrene and 3-hydroxy-1-nitropyrene were activated primarily by the 'classical' nitroreductase, while the other compounds, particularly in the presence of S9 metabolic activation, were dependent on transesterification for expression of their mutagenicity.  相似文献   

5.
The effect of highly purified rat liver cytosolic NAD(P)H-quinone oxidoreductase [EC 1.6.99.2] on the mutagenicity of 1,3- 1,6- and 1,8-dinitropyrene (DNP) was studied in the Ames Salmonella typhimurium mutagenicity assay. NAD(P)H-quinone oxidoreductase over the range of 0.02–0.8 μ g/plate (38–1500) units increased up to threefold the mutagenicity of all three DNPs in S. typhimurium TA 98. In TA98NR, a strain deficient in “classical” nitroreductase, the mutagenicity of 1,6- and 1,8-DNP was essentially unchanged, whereas that of 1,3-DNP was markedly reduced. NAD(P)H-quinone oxidoreductase enhanced the mutagenicity of 1,6- and 1,8-DNP to approximately equivalent extents in TA98NR and TA98. The mutagenicity of 1,3-DNP in TA98NR was potently enhanced by the addition of NAD(P)H-quinone oxidoreductase in a dose-responsive manner. In the presence of 0.8 μg NAD(P)H-quinone oxidoreductase, 1,3-DNP displayed a mutagenic response in TA98NR that was comparable to that obtained in TA98. NAD(P)H-quinone oxidoreductase was found to increase the mutagenicity of 1,6- but not 1,3- or 1,8-DNP to mutagenic intermediates in TA98/1,8-DNP6, a strain deficient in O-acetyltransferase activity. The results suggest that NAD(P)H-quinone oxidoreductase not only catalyzes reduction of the parent DNP but also that of partially reduced metabolites generated from that DNP. Such reductive metabolism may lead to increased formation of the penultimate mutagenic species.  相似文献   

6.
The metabolism and activation of 1-nitropyrene (1-NP) to reactive intermediates by lung microsomes and isolated lung cells was studied. Mutagenicity of 1-NP metabolites was assayed in Salmonella typhimurium TA98NR, a strain lacking a major component of nitroreductase activity. In the presence of NADPH, microsomes from rabbit, rat and hamster lung metabolized 1-NP to mutagenic products to a similar degree. Pretreatment with a mixture of polychlorinated biphenyls (PCB) decreased the formation of mutagenic metabolites by rabbit lung microsomes, but did not affect the production of mutagens by rat or hamster lung microsomes. 3H-1-NP was metabolized to covalently bound protein products at a rate of 82 and 10 pmol/mg by rabbit and hamster lung microsomes, respectively, whereas no binding was detected in rat lung microsomes. PCB-pretreatment increased covalent protein binding of 3 H-1-NP in lung microsomes from hamster and rat, but decreased the binding in rabbit lung microsomes. High performance liquid chromatography analysis indicated that 3H-1-NP was readily converted to ring-hydroxylated products by rabbit and hamster lung microsomes; the rate was much lower with rat lung microsomes. 3H-1-NP was activated to metabolites that covalently bound to protein in isolated rabbit lung cells, with the following rates being observed: Clara cells > lung digest > type II cells. In contrast, covalent protein binding in cells isolated from rat lung was very low. 1-NP was not activated to products mutagenic for S. typhimurium TA 98 N R when co-incubated with cells isolated either from rabbit or rat lung.Abbreviations 1-AP 1-aminopyrene - DMSO dimethyl sulfoxide - EGTA ethylene glycol-bis(ß-aminoethyl ether) - EM electron microscopy - HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid - HPBS HEPES-phosphate-buffered-saline - HPLC high performance liquid chromatography - NBT nitroblue tetrazolium - 1-NP 1-nitropyrene - 1-NP-4,5-diol trans-4,5-dihydro-4,5-dihydroxy-1-nitropyrene - 1-NP-9,10-diol trans-9,10-dihydro-9,10-dihydroxy-1-nitropyrene - 1-NP-4,5-oxide 1-nitropyrene-4,5-oxide - 1-NP-9,10-oxide 1-nitropyrene-9,10-oxide - 3-OH-1-NP 3-hydroxy-1-nitropyrene - 6-/8-OH-1-NP a mixture of 6- and 8-hydroxy-1-nitropyrene - PBS phosphate-buffered saline - PCB a mixture of polychlorinated biphenyls (Aroclor 1254) - TLC thin layer chromatography  相似文献   

7.
Nitrated pyrenes are mutagenic and tumorigenic environmental pollutants that are activated to DNA-binding derivatives via nitroreduction. We have investigated the enzymatic nitroreduction of 1-nitropyrene, 1,3-, 1,6- and 1,8-dinitropyrene to determine if differences in the extent of nitroreduction may help explain differences in their biological potencies. Each nitrated pyrene was incubated aerobically and anaerobically with 105,000 X g supernatant (S105) from Salmonella typhimurium TA98 and the nitroreductase-deficient strain, TA98NR, and with cytosol and microsomes from rat and human liver. Under anaerobic conditions, 1-nitropyrene and 1,3-dinitropyrene were reduced by TA98 S105 to a lesser extent than 1,6- and 1,8-dinitropyrene. The extent of 1,6- and 1,8-dinitropyrene metabolism was not altered relative to TA98 when using TA98NR S105, but the nitroreduction of 1-nitropyrene and 1,3-dinitropyrene was decreased. Both rat and human liver cytosol and microsomes reduced 1,6- and 1,8-dinitropyrene to greater extents than 1-nitropyrene and 1,3-dinitropyrene. Under aerobic conditions rat and human liver cytosols were similar to TA98 S105 in that aminopyrene decreased while nitrosopyrene formation increased. By comparison, oxygen decreased the microsomal formation of both nitrosopyrenes and aminopyrenes. The reduction of succinoylated cytochrome c was measured during the hepatic metabolism of nitro- and nitrosopyrenes under aerobic conditions. The data indicated that reduced nitro- and nitrosopyrene intermediates were directly reducing succinoylated cytochrome c and that the assay could be used as a measure of aerobic nitroreduction. These studies demonstrate that 1,6- and 1,8-dinitropyrene are reduced to a greater extent than 1-nitropyrene and 1,3-dinitropyrene, which corresponds to their relative biological potencies as mutagens and carcinogens. Furthermore, although more extensive nitroreduction is detected under anaerobic conditions, the nitroreduction that occurs aerobically may be important for the mutagenic and tumorigenic properties of these compounds.  相似文献   

8.
Of the many nitroarenes, dinitropyrenes (DNPs) have the potential to revert Salmonella typhimurium his- mutants. This study was conducted to investigate the potential mutagens present in airborne particulate matter collected in Santiago, Chile. 5 organic substances extracted with dichloromethane showed mutagenic rates of from 38.9 to 287 revertants per m3 of air for S. typhimurium his- strain TA98 without S9 mix. 4 of the samples had greatly reduced mutagenicity for strain TA98/1,8DNP6 but not for strain TA98NR. The 1-nitropyrene (1-NP) content accounted for 0.06-0.15 microgram per g of particulate, as determined by high-performance liquid chromatography (HPLC), but the contribution of the compound to mutagenicity was less than 1% of the total activity. On the other hand, by using two columns in the HPLC, DNPs of 1,6- and 1,8-isomers were detected in the samples pooled after the determination of 1-NP, and the amount of the derivatives was about 0.2 microgram per g of particulate matter.  相似文献   

9.
The effect of highly purified rat liver cytosolic NAD(P)H-quinone oxidoreductase [EC 1.6.99.2] on the mutagenicity of 1,3- 1,6- and 1,8-dinitropyrene (DNP) was studied in the Ames Salmonella typhimurium mutagenicity assay. NAD(P)H-quinone oxidoreductase over the range of 0.02-0.8 micrograms/plate (38-1500) units increased up to threefold the mutagenicity of all three DNPs in S. typhimurium TA 98. In TA98NR, a strain deficient in "classical" nitro-reductase, the mutagenicity of 1,6- and 1,8-DNP was essentially unchanged, whereas that of 1,3-DNP was markedly reduced. NAD(P)H-quinone oxidoreductase enhanced the mutagenicity of 1,6- and 1,8-DNP to approximately equivalent extents in TA98NR and TA98. The mutagenicity of 1,3-DNP in TA98NR was potently enhanced by the addition of NAD(P)H-quinone oxidoreductase in a dose-responsive manner. In the presence of 0.8 micrograms NAD(P)H-quinone oxidoreductase, 1,3-DNP displayed a mutagenic response in TA98NR that was comparable to that obtained in TA98. NAD(P)H-quinone oxidoreductase was found to increase the mutagenicity of 1,6- but not 1,3- or 1,8-DNP to mutagenic intermediates in TA98/1,8-DNP6, a strain deficient in O-acetyltransferase activity. The results suggest that NAD(P)H-quinone oxidoreductase not only catalyzes reduction of the parent DNP but also that of partially reduced metabolites generated from that DNP. Such reductive metabolism may lead to increased formation of the penultimate mutagenic species.  相似文献   

10.
A variety of nitro-substituted phenyl alkyl/aryl thioethers and nitroso-substituted phenyl alkyl/aryl thioethers have been synthesized and tested for their mutagenicity towards Salmonella typhimurium strain TA100, TA98, TA98NR and TA98/1,8-DNP(6) in the absence of S9 mix. The relative order of mutagenicity in TA98 and TA100 among p-nitrophenyl thioethers having alkyl or aryl substituents is allyl>phenyl>benzyl>butyl>propyl>ethyl>methyl. Compounds having an alkyl chain C(6) to C(12) were found to be non-mutagenic. Among the various positional isomers (ortho, meta and para) of nitro-substituted diphenyl thioethers only the compounds having the -NO(2) function at the para position is mutagenic, whereas compounds having a -NO(2) function at ortho and meta are non-mutagenic. However, the reduced intermediate, ortho-nitroso derivative was found to be mutagenic in all the four strains but the meta-nitroso derivative was found to be non-mutagenic. All mutagens were found to be non-mutagenic when tested in nitroreductase deficient strain TA98NR, whereas their nitroso intermediates are found to be mutagenic. A substantial fall in the mutagenic activity is observed when some mutagens are tested in O-acetyltransferase deficient strain TA98/1,8-DNP(6).  相似文献   

11.
CoASAc-dependent N-hydroxyarylamine O-acetyltransferase (OAT) is an enzyme involved in the intracellular metabolic activation of N-hydroxyarylamines derived from mutagenic nitroarenes and aromatic amines. The oat gene encoding the enzyme of S. typhimurium TA98 and TA100 was specifically disrupted and the sensitivities of the resulting strains, i.e., YG7130 and YG7126, to mutagens were compared with those of the conventional oat-deficient strains, i.e., TA98/1,8DNP6 and TA100/1,8DNP, respectively. The new oat-deficient strains and the conventional strains exhibited similar sensitivity against most of the chemicals tested: both strains YG7130 and strain TA98/1,8-DNP6 were resistant to mutagenicity by 1,8-dinitropyrene (1, 8-DNP), 1-nitropyrene, 2-amino-6-methyldipyrido[1,2-alpha:3', 2'-d]imidazole (Glu-P-1) and 2-amino-3-methyl-3H-imidazo[4, 5-f]quinoline (IQ); neither strain YG7130 nor strain TA98/1,8-DNP6 was resistant to the mutagenicity of 3-amino-1-methyl-5H-pyrido[4, 3-b]indole (Trp-P-2); strain YG7126 and strain TA100/1,8-DNP were refractory to the mutagenicity of 1,8-DNP. However, the order of the sensitivity against 2-nitrofluorene (2-NF) was TA98>YG7130>TA98/1, 8-DNP6 and TA100>YG7126>TA100/1,8-DNP. Since the strains YG7130 and YG7126 have chloramphenicol resistance (Cmr) gene in place of the chromosomal oat gene for gene disruption, the possible involvement of chloramphenicol acetyltransferase (CAT) encoded by the Cmr gene in the activation of 2-NF was examined. Strikingly, introduction of plasmid pACYC184 carrying the Cmr gene alone substantially enhanced the sensitivity of the conventional oat-deficient strains to 2-NF. These results suggest that the new strains as well as the conventional strains are useful to assess the roles of OAT in the metabolic activation of nitroaromatics and aromatic amines in S. typhimurium, and also that CAT has the ability to activate N-hydroxy aromatic amines to mutagens.  相似文献   

12.
Nitropolycyclic aromatic hydrocarbons are ubiquitous environmental pollutants, many of which are potent mutagens in bacterial and mammalian cells and carcinogenic to rodents. In this study, we investigated the fungal metabolism of 1-nitropyrene and determined the mutagenic activity of the metabolites toward Salmonella typhimurium TA98, TA98NR, and TA100. Cunninghamella elegans metabolized 1-nitropyrene to form glucoside conjugates of 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene. The metabolites were isolated by reversed-phase high-pressure liquid chromatography and characterized by application of UV absorption, 1H-nuclear magnetic resonance, and mass spectroscopy. Mutagenicity assays performed on samples extracted from incubations of C. elegans with 1-nitropyrene indicated that mutagenic activity decreased with time. Consistent with the loss in mutagenic activity, the glucoside conjugates of 6- and 8-hydroxy-1-nitropyrene were nonmutagenic in the Salmonella reversion assay. The results indicate that the fungus C. elegans metabolizes 1-nitropyrene to detoxified products.  相似文献   

13.
'Classical nitroreductase' is an enzyme involved in the intracellular metabolic activation of mutagenic nitroarenes. The nitroreductase gene of Salmonella typhimurium TA1538 was cloned into pBR322 and the plasmids harboring the gene were introduced into TA98 and TA100. The resulting strains (YG1021 and YG1026) had more than 50 times higher nitrofurazone-reductase activity than TA1538 containing pBR322, and were extremely sensitive to the mutagenic action of 2-nitrofluorene, 1-nitropyrene and 2-nitronaphthalene. These results indicate that the new strains permit the efficient detection of mutagenic nitroarenes.  相似文献   

14.
Nitropolycyclic aromatic hydrocarbons are ubiquitous environmental pollutants, many of which are potent mutagens in bacterial and mammalian cells and carcinogenic to rodents. In this study, we investigated the fungal metabolism of 1-nitropyrene and determined the mutagenic activity of the metabolites toward Salmonella typhimurium TA98, TA98NR, and TA100. Cunninghamella elegans metabolized 1-nitropyrene to form glucoside conjugates of 6-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene. The metabolites were isolated by reversed-phase high-pressure liquid chromatography and characterized by application of UV absorption, 1H-nuclear magnetic resonance, and mass spectroscopy. Mutagenicity assays performed on samples extracted from incubations of C. elegans with 1-nitropyrene indicated that mutagenic activity decreased with time. Consistent with the loss in mutagenic activity, the glucoside conjugates of 6- and 8-hydroxy-1-nitropyrene were nonmutagenic in the Salmonella reversion assay. The results indicate that the fungus C. elegans metabolizes 1-nitropyrene to detoxified products.  相似文献   

15.
Dinitropyrenes (DNP), present in polluted air, are potent direct-acting mutagens in Salmonella typhimurium TA98. This mutagenicity is markedly reduced in the presence of rat-liver S9 or microsomes. This has now been confirmed using mouse hepatic fractions. Since most in vitro test systems do not adequately simulate conditions encountered in the intact animal, we have investigated dinitropyrene mutagenicity to Salmonella in the host-mediated assay. 1,8-Dinitropyrene (1,8-DNP) given p.o. to BALB/c mice induced a weak mutagenic effect in S. typhimurium TA98 recovered from the liver 1 h after i.v. administration (optimum time). Over the entire dose range tested no toxicity to bacterial cells was detected. Mutation induction in vivo was dose-related with maximum response at 1 mg DNP/kg body weight. This optimum dose, however, was non-mutagenic to strains TA98/1,8-DNP6 (O-transacetylase-deficient) or TA98NR/1,8-DNP6 (nitroreductase- and O-transacetylase-deficient). 1,3-Dinitropyrene and 1,6-dinitropyrene were weakly mutagenic to TA98 at doses similar to 1,8-DNP. Studies with [14C]1,8-DNP showed that 1 h after oral dosing (1 mg/kg), over 100 ng of 1,8-DNP equivalents were present in the liver (= 0.73% dose). However, only about 5.5 ng were present in the bacterial pellet, suggesting that hepatic components in vivo, as in vitro, bind to DNP, thus interfering with its interaction with Salmonella.  相似文献   

16.
The mononitro-substituted isomers of benzo[a]pyrene (B[a]P), 1-, 3- and 6-nitrobenzo[a]pyrene (NB[a]P), are environmental pollutants and are metabolized to mutagens in Salmonella by rat-liver homogenate postmitochondrial supernatant (S9) fractions. In this study, activation of these compounds to mutagens was investigated using the hepatocyte-mediated Salmonella mutagenicity assay. Hepatocytes from rats treated with Aroclor 1254 activated both 3-NB[a]P and 1-NB[a]P to mutagens, while 6-NB[a]P was not mutagenic. The positive mutagenicity responses were functions of both the chemical dose and the hepatocyte concentration. By using a nitroreductase-deficient strain (TA98NR) and a transesterificase-deficient strain (TA98/1,8-DNP6), it was verified that the direct-acting mutagenicities of 1- and 3-NB[a]P primarily were due to metabolic processes involving nitroreduction while the S9- and hepatocyte-mediated mutagenicity responses were also dependent on transesterification. When compared with the mutagenic responses produced with S9, the mutations induced by 1- and 3-NB[a]P in the presence of hepatocytes were relatively more dependent upon nitroreductase metabolism and less on transesterification. Thus, intact hepatocytes were capable of activating 1- and 3-NB[a]P to mutagenic metabolites and some of these metabolites appeared to be different from those produced by S9.  相似文献   

17.
All positional isomers of mononitro- and monoaminobiphenyls and those of dinitro-, diamino- and aminonitrobiphenyls, which have one substituent on each benzene ring, were assayed for mutagenicity in Salmonella typhimurium by the Ames method. The results suggest that the structural requirements favoring mutagenic activity are the presence of substituents at the 4-position and their absence at the 2'-position. The introduction of an amino group to the 3'- or 4'-position of 4-nitrobiphenyl or a nitro group to 3'- or 4'-position of 4-aminobiphenyl enhanced the mutagenicity. Among the mutagenic compounds, 4-nitro analogues were mutagenic in strains TA98 and TA100 in the absence of a microsomal metabolic activation system. Strain TA98NR was not reverted by the direct-acting mutagens, whereas strain TA98/1,8-DNP6 was as revertible as strain TA98; these results suggest that the direct-acting mutagenicity involves the reduction of the nitro group by bacterial nitroreductase but does not involve specific esterification enzymes.  相似文献   

18.
Dependence on S. typhimurium enzymes of mutagenicities of nitrobenzene (NB) and o-, p-chloronitrobenzenes (o-, p-CNBs), which are only mutagenic in the presence of S9 and norharman (NOH), was investigated using a nitroreductase-deficient strain TA98NR and an esterifying enzyme-deficient strain TA98/1,8-DNP6. NB exhibited mutagenicity towards TA98 but did not towards TA98NR strain in spite of the presence of S9 in the assay system. The mutagenicity of o-CNB towards TA98NR was significantly lower than that of o-CNB towards TA98. In contrast to NB and o-CNB, synthesized phenylhydroxylamine (PHA) and o-chlorophenylhydroxylamine (o-CPHA) exhibited approximately the same mutagenicity towards both tester strains. These results indicate that the nitroreduction required for the appearance of mutagenicity of the nitrobenzene derivatives in the presence of S9 and NOH is dependent on the nitroreductase of the tester strain. In addition, the mutagenicities of PHA and p-CPHA were significantly higher towards TA98/1,8-DNP6 than towards TA98, suggesting that the esterification of their hydroxylamines produced inactivation rather than activation. From these results, it was concluded that S9 and NOH play a role in metabolic activation other than the reduction of the nitro group to hydroxylamine and subsequent esterification for the mutagenesis of NB and its derivatives.  相似文献   

19.
In order to elucidate the mechanisms of mutagenic activation of nitroarenes, we tested the mutagenic potency of 18 kinds of nitroarenes including nitrated biphenyl, fluorene, phenanthrene and pyrene on Salmonella typhimurium TA98 in the absence and presence of S9 mix. The mutagenicities of 2,4-dinitrobiphenyl derivatives and 4-nitrobiphenyl were enhanced by the addition of S9. 2,4,6-Trinitrobiphenyl (3 net rev./10 micrograms without S9) was activated 60-fold by the mammalian metabolic system (181 net rev./10 micrograms with 10% S9). The mutagenic potency of 2,4,2',4'-tetranitrobiphenyl in TA98, TA98NR and TA98/1,8-DNP6 was also enhanced by the addition of 10% S9. But 1-nitropyrene and 1,3-dinitropyrene, which are well-known mutagens and carcinogens, were deactivated to 3% and 0.4%, respectively, by the addition of 10% S9. Separate addition of microsomal and cytosolic fractions slightly activated the mutagenicity of 2,4,6-trinitrobiphenyl, and 2,4,2',4'-tetranitrobiphenyl was activated not only by S9 but also by the cytosolic fraction.  相似文献   

20.
We have designed and constructed a series of plasmids that contain the major and/or minor Escherichia coli nitroreductase genes, nfsA and nfsB, in different combinations with R plasmid mucA/B genes and the Salmonella typhimurium OAT gene. The plasmid encoded gene products are necessary for both the metabolic activation of a range of structurally diverse nitrosubstituted compounds, and for mutagenic translation bypass. Introduction of these plasmids into S. typhimurium TA1538 and TA1535 has created several new tester strains which exhibit an extremely high mutagenic sensitivity and a broad substrate specificity towards a battery of nitrosubstituted test compounds that included 4-nitroquinoline-1-oxide (4-NQO), nitrofurazone (NF), 1-nitropyrene (1-NP), 2-nitronaphthalene (2-NN), 2-nitrofluorene (2-NF), and 1,6-dinitropyrene (1,6-DNP). Our studies show that the nfsA gene encodes a product that is extremely effective in the metabolic activation of a range of structurally diverse nitrosubstituted compounds. Several of the new tester strains are more than two orders of magnitude more sensitive to nitrosubstituted compounds than the Ames tester strains TA100 or TA98. In addition to enhancing mutagenic sensitivity, plasmids encoding both metabolic and mutagenesis functions on a single plasmid provide considerable flexibility for future mechanistic studies or tester strain development, in which it may be necessary to introduce additional plasmids containing different antibiotic resistance markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号