首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The power of heteronuclear NMR spectroscopy to study macromoleculesand their complexes has been amply demonstrated over the last decade. Theobstacle to routinely applying these techniques to the study of DNA has beenthe synthesis of 13C,15N-labeled DNA. Here wepresent a simple and efficient method to generate isotope-labeled DNA forNMR studies that is as easy as that for isotope labeling of RNA. The methodwas used to synthesize a uniformly13 C,15N-labeled 32-nucleotide DNA that binds tohuman basic fibroblast growth factor with high affinity and specificity.Isotope-edited experiments were applied to the13 C,15N-labeled DNA bound to unlabeled protein,and the 13 C,15N-labeled DNA was also examined incomplex with 15N-labeled protein. The NMR experiments showthat the DNA adopts a well-defined stable structure when bound to theprotein, and illustrate the potential of13 C,15N-labeled DNA for structural studies ofDNA–protein complexes.  相似文献   

2.
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1′ and C5′ with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg2+ ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly 13C/15N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive 13C–13C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules.  相似文献   

3.
4.
A novel method is proposed for large-scale synthesis of (13)C- and (15)N-labeled DNA for NMR studies. In this methodology, endonuclease-sensitive repeat amplification (ESRA), a modified PCR strategy, has been used to amplify tandem repeats of the target DNA sequence. The design of the template is such that restriction enzyme (RE) sites separate repeats of the target sequence. The ESRA product is then cloned into a suitable vector. The Escherichia coli cells harboring the plasmid are grown in minimal medium containing [(13)C]glucose and (15)NH(4)Cl as the sole source of carbon and nitrogen, respectively. The target sequence is released by RE digestion of the plasmid, followed by purification using PAGE. Under optimized conditions, the yield ( approximately 5 mg/liter of culture) of (13)C/(15)N-labeled DNA prepared using this approach is found to be several times higher compared to other known enzymatic methods. Successful incorporation of the isotopes has been confirmed using 2D NMR techniques.  相似文献   

5.
Nearly complete 1H, 13C and15 N NMR assignments have been obtained for a doubly labeled 14-base pair DNA duplex in solution both in the free state and complexed with the uniformly 15N-labeled Antennapedia homeodomain. The DNA was either fully 13C,15N-labeled or contained uniformly 13C, 15N-labeled nucleotides only at those positions which form the protein–DNA interface in the previously determined NMR solution structure of the Antennapedia homeodomain–DNA complex. The resonance assignments were obtained in three steps: (i) identification of the deoxyribose spin systems via scalar couplings using 2D and 3D HCCH-COSY and soft-relayed HCCH-COSY; (ii) sequential assignment of the nucleotides via1 H–1H NOEs observed in 3D13 C-resolved NOESY; and (iii) assignment of the imino and amino groups via 1H–1H NOEs and15 N–1H correlation spectroscopy. The assignment of the duplex in the 17 kDa protein–DNA complex was greatly facilitated by the fact that 1H signals of the protein were filtered out in 13C-resolved spectroscopy and by the excellent carbon chemical shift dispersion of the DNA duplex. Comparison of corresponding 13C chemical shifts of the free and the protein-bound DNA indicates conformational changes in the DNA upon complex formation.  相似文献   

6.
A method to obtain uniformly isotopically labeled (15N and 15N/13C) protein from mammalian cells is described. The method involves preparation of isotopically labeled media consisting of amino acids isolated from bacterial and algal extracts supplemented with cysteine and enzymatically synthesized glutamine. The approach is demonstrated by producing 15N-labeled and 15N/13C-labeled urokinase from Sp2/0 cells and successfully growing Chinese hamster ovary (CHO) cells on the labeled media. Thus, using the procedures described, isotopically labeled proteins that have been expressed in mammalian cells can be prepared, allowing them to be studied by heteronuclear multidimensional NMR techniques.  相似文献   

7.
A novel NMR pulse sequence has been developed that correlates the H2 resonances with the C2 and the N1 (N3) resonances in adenine nucleobases of 13C, 15N labeled oligonucleotides. The pulse scheme of the new 3D-HNHC experiment is composed of a 2J-15N-HSQC and a 1J-13C-HSQC and utilizes large 2J(H2, N1(N3)) and 1J(H2, C2) couplings. The experiment was applied to a medium-size 13C, 15N-labeled 36mer RNA. It is useful to resolve assignment ambiguities occurring especially in larger RNA molecules due to resonance overlap in the 1H-dimension. Therefore, the missing link in correlating the imino H3 resonances of the uracils across the AU base pair to the H8 resonances of the adenines via the novel pulse sequence and the TROSY relayed HCCH-COSY (Simon et al. in J Biomol NMR 20:173–176 2001) is provided. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
10.
A new method is presented for the synthesis of oligonucleotides containing 15N-enriched 5-fluorocytosine (FC). Due to the reduced pK of FC, the amino protons of an unpaired FC residue may be observed at lower values of solution pH. The labeled FC residue has been placed as a template base at a model DNA replication fork. The amino protons of the FC residue have been identified in isotope-edited NMR spectra. Data is presented for a template FC residue unpaired, paired with guanine, and mispaired with adenine. These studies demonstrate the utility of labeled FC in examining unusual DNA structures.  相似文献   

11.
The use of uniform 13C,15N labeling in the NMR spectroscopic study of RNA structures hasgreatly facilitated the assignment process in small RNA oligonucleotides. For ribose spinsystem assignments, exploitation of these labels has followed previously developed methodsfor the study of proteins. However, for sequential assignment of the exchangeable andnonexchangeable protons of the nucleotides, it has been necessary to develop a variety of newNMR experiments. Even these are of limited utility in the unambiguous assignment of largerRNAs due to the short carbon relaxation times and extensive spectral overlap for all nuclei.These problems can largely be overcome by the additional use of base-type selectively13C,15N-labeled RNA in combination with a judicious use of related RNAs with basesubstitutions. We report the application of this approach to a 36-nucleotide ATP-binding RNAaptamer in complex with AMP. Complete sequential 1H assignments, as well as the majorityof 13C and 15N assignments, were obtained.  相似文献   

12.
An effective in vitro enzymatic synthesis is described for the production of nucleoside triphosphates (NTPs) which are stereo-specifically deuterated on the H5" position with high selectivity (>98%), and which can have a variety of different labels (13C, 15N, 2H) in other positions. The NTPs can subsequently be employed in the enzymatic synthesis of RNAs using T7 polymerase from a DNA template. The stereo-specific deuteration of the H5" immediately provides the stereo-specific assignment of H5' resonances in NMR spectra, giving access to important structural parameters. Stereo-chemical H-exchange was used to convert commercially available 1,2,3,4,5,6,6-2H-1,2,3,4,5,6-13C-D-glucose (d7-13C6-D-glucose) into [1,2,3,4,5,6(R)-2H-1,2,3,4,5,6-13C]-D-glucose (d6-13C6-D-glucose). [1',3',4',5"-2H-1',2',3',4',5'-13C]GTP (d4-13C5-GTP) was then produced from d6-13C6-D-glucose and guanine base via in vitro enzymatic synthesis employing enzymes from the pentose-phosphate, nucleotide biosynthesis and salvage pathways. The overall yield was approximately 60 mg NTP per 1 g glucose, comparable with the yield of NTPs isolated from Escherichia coli grown on enriched media. The d4-13C5-GTP, together with in vitro synthesised d5-UTP, d5-CTP and non-labelled ATP, were used in the synthesis of a 31 nt RNA derived from the primer binding site of hepatitis B virus genomic RNA. (13C,1H) hetero-nuclear multiple-quantum spectra of the specifically deuterated sample and of a non-deuterated uniformly 13C/15N-labelled sample demonstrates the reduced spectral crowding and line width narrowing compared with 13C-labelled non-deuterated RNA.  相似文献   

13.
14.
The advantages of the organism Dictyostelium discoideum as an expression host for recombinant glycoproteins have been exploited for the production of an isotopically labeled cell surface protein for NMR structure studies. Growth medium containing [(15)N]NH(4)Cl and [(13)C]glycerol was used to generate isotopically labeled Escherichia coli, which was subsequently introduced to D. discoideum cells in simple Mes buffer. A variety of growth conditions were screened to establish minimal amounts of nitrogen and carbon metabolites for a cost-effective protocol. Following single-step purification by anion-exchange chromatography, 8 mg of uniformly (13)C,(15)N-labeled protein secreted by approximately 10(10) D. discoideum cells was isolated from 3.3 liters of supernatant. Mass spectrometry showed the recombinant protein of 16 kDa to have incorporated greater than 99.9% isotopic label. The two-dimensional (1)H-(13)C HSQC spectrum confirms (13)C labeling of both glycan and amino acid residues of the glycoprotein. All heteronuclear NMR spectra showed a good dispersion of cross-peaks essential for high-quality structure determination.  相似文献   

15.
Stable isotope probing (SIP) of nucleic acids is a powerful tool that can identify the functional capabilities of noncultivated microorganisms as they occur in microbial communities. While it has been suggested previously that nucleic acid SIP can be performed with 15N, nearly all applications of this technique to date have used 13C. Successful application of SIP using 15N-DNA (15N-DNA-SIP) has been limited, because the maximum shift in buoyant density that can be achieved in CsCl gradients is approximately 0.016 g ml-1 for 15N-labeled DNA, relative to 0.036 g ml-1 for 13C-labeled DNA. In contrast, variation in genome G+C content between microorganisms can result in DNA samples that vary in buoyant density by as much as 0.05 g ml-1. Thus, natural variation in genome G+C content in complex communities prevents the effective separation of 15N-labeled DNA from unlabeled DNA. We describe a method which disentangles the effects of isotope incorporation and genome G+C content on DNA buoyant density and makes it possible to isolate 15N-labeled DNA from heterogeneous mixtures of DNA. This method relies on recovery of "heavy" DNA from primary CsCl density gradients followed by purification of 15N-labeled DNA from unlabeled high-G+C-content DNA in secondary CsCl density gradients containing bis-benzimide. This technique, by providing a means to enhance separation of isotopically labeled DNA from unlabeled DNA, makes it possible to use 15N-labeled compounds effectively in DNA-SIP experiments and also will be effective for removing unlabeled DNA from isotopically labeled DNA in 13C-DNA-SIP applications.  相似文献   

16.
We have substantially improved a procedure that we previously described for producing 13C/15N-labeled DNA (Chen et al., FEBS Lett. 436, 372-376, 1998) to provide an economical and straightforward approach to the preparation of labeled DNA. The conditions for the PCR reactions have been optimized to permit the use of low concentrations of the costly labeled dNTPs (50 microM for each). In addition, a rapid and high-yield purification procedure has been developed that allows us to obtain a high yield of very pure labeled DNA. These modifications to our original procedure permit us to obtain 1.9 mg of an 18 bp DNA oligomer from 20 mg of dNTPs (ca. 10% yield from the starting dNTPs). This is sufficient material for the preparation of 0.4 mM sample in a volume of 400 microl. In summary, this procedure is a cost-effective, time-efficient procedure for the production of labeled DNA for NMR studies.  相似文献   

17.
This protocol describes a method for direct labeling and detection of small RNAs present in total RNA by splinted ligation. The assay uses a small RNA-specific bridge oligonucleotide to form base pairs with the small RNA and a 5'-end-radiolabeled ligation oligonucleotide. The captured small RNA is directly labeled by ligation. Detection of the labeled small RNAs is performed by denaturing gel electrophoresis and autoradiography or phosphor-imaging. This protocol has been successfully used to study expression of various classes of biological small RNAs from nanogram to microgram amounts of total RNA without an amplification step. It is significantly simpler to perform and more sensitive than either northern blotting or ribonuclease protection assays. Once the oligonucleotides have been synthesized and total RNA has been extracted, the procedure can be completed in 6 h.  相似文献   

18.
Multidimensional heteronuclear NMR has been applied to the structural analysis of myotrophin, a novel protein identified from spontaneously hypertensive rat hearts and hypertrophic human hearts. Myotrophin has been shown to stimulate protein synthesis in myocytes and likely plays an important role in the initiation of cardiac hypertrophy, a major cause of mortality in humans. Recent cDNA cloning revealed that myotrophin has 11B amino acids containing 2.5 contiguous ANK repeats, a motif known to be involved in a wide range of macromolecular recognition. A series of two- and three-dimensional heteronuclear bond correlation NMR experiments have been performed on uniformly 15N-labeled or uniformly 15N/13C-labeled protein to obtain the 1H, 15N, and 13C chemical shift assignments. The secondary structure of myotrophin has been determined by a combination of NOEs, NH exchange data, 3JHN alpha coupling constants, and chemical shifts of 1H alpha, 13C alpha, and 13 C beta. The protein has been found to consist of seven helices, all connected by turns or loops. Six of the seven helices (all but the C-terminal helix) form three separate helix-turn-helix motifs. The two full ANK repeats in myotrophin are characteristic of multiple turns followed by a helix-turn-helix motif. A hairpin-like turn involving L32-R36 in ANK repeat #1 exhibits slow conformational averaging on the NMR time scale and appears dynamically different from the corresponding region (D65-169) of ANK repeat #2.  相似文献   

19.
Novel oligonucleotide derivatives containing N-(methanesulfonyl)-phosphoramidate (mesyl phosphoramidate) group have been described. Solid-phase synthesis of these compounds using an automated DNA synthesizer has been performed for the first time, including the Staudinger reaction between methanesulfonyl azide (mesyl azide) and 3′,5′-dinucleoside 2-cyanoethyl phosphite within an oligonucleotide immobilized on the polymer support, which is a product of phosphoramidite coupling. The mesyl phosphoramidate group is stable to the conditions of oligonucleotide synthesis, in particular, during acidic detritylation and subsequent removal of protecting groups and cleavage of an oligonucleotide from the polymer support by concentrated aqueous ammonia or methylamine at 55°C. It has been shown that the stability of complementary duplexes of oligodeoxynucleotides containing the mesyl phosphoramidate group with a single-stranded DNA is not inferior to the stability of native DNA:DNA duplex. Furthermore, mesyl phosphoramidate oligonucleotides are able to form a complementary duplex with RNA, which is only slightly less stable than the equivalent DNA:RNA duplex. This raises the possibility of their application as potential antisense therapeutic agents.  相似文献   

20.
Magic-angle spinning solid-state NMR experiments are well suited to investigating the structures and mechanisms of important proteins that are inaccessible to X-ray crystallography and solution NMR spectroscopy, including membrane proteins and disease-related protein aggregates. Good progress has been made in the development of methods for the complete structure determination of small (<20 kDa) solid proteins using uniformly 13C, 15N-labeled samples. Studies of selectively labeled proteins focusing on labeled active sites have yielded insights into the mechanisms of enzymes and of membrane proteins involved in energy and signal transduction. Studies of selectively labeled synthetic peptides have yielded structural models for biomedically important systems, including amyloid fibrils and surface-associated peptides involved in biomineralization and cell adhesion. Novel NMR and biochemical methods are being developed to target solid-state NMR experiments within large proteins and whole cells. These approaches are being used to investigate mechanisms of transmembrane signaling by membrane receptors and to characterize binding interactions between antibiotics and bacterial cell walls. Thus, solid-state NMR is proving to be a valuable biophysical tool for probing structure and dynamics in a wide range of biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号