首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
IAA (indoleacetic acid) is known to induce cell enlargement without cell division in tobacco pith explants grown on an agar medium without added cytokinin. The very long lag period before IAA (2 × 10?5M) stimulates growth, about 3 days, can be useful to study the metabolic changes which lead to the promotion of growth. When the disks are transferred to a medium without IAA after 2 days or less of treatment with IAA, the IAA does not stimulate growth. Disks transferred after 3 days, subsequently show an auxin response, almost as great as those given IAA continuously. At 5 × 10?4M, 5-fluorodeoxyuridine (FUDR), which inhibits DNA synthesis by blocking formation of thymidylate, completely suppresses the lAA-induced growth if it is added together with the IAA or 1 day later. When the FUDR is given 2 days after the IAA, there is a small increment of auxin-induced growth, and an even greater amount if added after 3 days. The period when exogenous auxin must be present to stimulate growth corresponds to the period of FUDR sensitivity. The FUDR inhibition is prevented by thymidine but not by uridine. Other inhibitors of DNA synthesis, hydroxyurea and fluorouracil, also inhibit auxin-induced growth. Thus DNA synthesis seems to be required for auxin induction of cell enlargement in tobacco pith explants. In contrast, FUDR does not inhibit auxin-induced growth in corn coleoptile and artichoke tuber sections.  相似文献   

2.
Studies on the role of RNA synthesis in auxin induction of cell enlargement   总被引:4,自引:2,他引:2  
Nooden LD 《Plant physiology》1968,43(2):140-150
Selective inhibitors were used to study the connection between nucleic acid synthesis and indoleacetic acid (IAA) induction of cell enlargement. Actinomycin D (act D) and azaguanine (azaG) almost completely inhibit IAA-induced growth in aged artichoke tuber disks when they are added simultaneously with IAA. In contrast, when they are added 24 hours after the hormone, these inhibitors have little or no effect on the induced growth which continues for 48 hours or more with little or no inhibition. Inhibitors of protein synthesis still stop growth when applied 24 hours after the IAA, thus protein synthesis and presumably supporting metabolism are still essential.

In corn coleoptile sections auxin-induced growth did not show any pronounced tendency to become less sensitive to act D as the IAA treatment progressed. Act D did not completely inhibit the response to IAA unless the sections were pretreated with act D for 6 hours. In contrast to act D, cordycepin produced almost complete inhibition of IAA-induced growth when added with the IAA.

Although IAA has a very large and very rapid stimulatory effect (within 10 min) on incorporation of 32P-orthophosphate into RNA in disks, it did not cause a detectable change in the base composition of the RNA synthesized. Furthermore, the promotive effect could be accounted for through increased uptake of the 32P. That much of the RNA synthesis in these tissues is not necessary for auxin action is indicated by the results with fluorouracil (FU). FU strongly inhibits RNA synthesis, probably acting preferentially on ribosomal RNA synthesis, without inhibiting auxin-induced growth in the disks or coleoptile sections. FU also strongly inhibited respiration in auxin-treated disks indicating that the large promotion of respiration by auxin likewise may not be entirely necessary for growth.

At least in the artichoke disks, RNA synthesis is required for auxin induction of cell enlargement and not for cell enlargement itself.

The possible relationships of auxin induction of cell enlargement and RNA synthesis are discussed.

  相似文献   

3.
Daphne Vince 《Planta》1968,82(3):261-279
Summary Ligh-induced anthocyanin synthesis in excised dark-grown internodes of Sorghum was depressed by the addition of auxin to the incubating medium at physiological concentrations. Both IAA and the synthetic auxin, 2,4-D, reduced anthocyanin yield. Similar results were obtained with isolated internode segments and in internodes incubated with coleoptiles (the major source of endogenous auxins) attached. Auxin increased the duration of the lag phase before anthocyanin synthesis began and reduced the rate during the subsequent linear phase. Elongation continued longer with IAA than without it and anthocyanin formation did not begin until extension growth had ceased or was slowing down in both cases; the rate of anthocyanin synthesis in the IAA solution remained depressed compared with that in buffer even after extension growth had ceased in both.At low concentrations IAA stimulated elongation growth without reducing anthocyanin yield and it is unlikely that the effect of IAA on anthocyanin synthesis results from the increased utilisation in growth of substrates needed for anthocyanin formation. The results of reciprocal transfer experiments from dark to light, and vice versa, showed that the action of IAA was associated with its presence in the incubating medium during the irradiation period. If present only in darkness, before or after transfer to light, IAA did not reduce anthocyanin formation; in the former case total yield was increased by IAA as a result of the stimulation of elongation growth, the concentration of anthocyanin remaining unchanged.GA3 also decreased anthocyanin content; the effect was greater in sections incubated with coleoptiles attached and it is possible that GA3 acts by increasing the concentration of endogenous auxins. However, CCC, which has been reported to decrease endogenous auxin levels, also reduced anthocyanin yield.The effect of IAA was not influenced by the presence of ascorbate in the incubating medium, nor did added ascorbate result in the formation of any acylated cyanidin derivative in internodes maintained in darkness.Possible relationships between light-induced anthocyanin formation and the photo-inhibition of elongation are discussed.  相似文献   

4.
Measurements were made over a 4-day period of the effect of added indoleacetic acid (IAA), puromycin, actinomycin D and 5-fluorodeoxyuridine (FUdR) on growth and the levels of total DNA, RNA, protein and cellulase in segments of tissue at the apex of decapitated etiolated epicotyls of Pisum sativum, L. var. Alaska.

The hormone induced swelling of parenchyma cells and cell division. By 3 days after IAA application, the amounts of DNA and protein were approximately double, RNA triple and cellulase 12 to 16 times the levels in controls. All of these changes were prevented by both puromycin and actinomycin D. FUdR prevented DNA synthesis and cell division but not swelling or synthesis of RNA, protein and cellulase.

It is concluded that IAA-induced RNA synthesis is required for cellulase synthesis and lateral cell expansion, whether or not cell division takes place.

  相似文献   

5.
A study has been made on the influence of indole-3-acetic acid (IAA) on the ribonuclease (RNase) activity in wheat coleoptile sections and green pea stem sections. The hormonal effects on the enzyme activity, ribonncleic acid (RNA) metabolism and growth have been compared. Addition of 10?5M IAA to the plant sections causes their RNase activity to decrease and their elongation to increase. Removal of the added IAA results in increasing enzyme activity and decreasing growth. The altered enzyme activities are paralleled by opposite changes in the RNA net synthesis. Administration of crystalline RNase to the plant tissue depresses growth. There is thus evidence that the in vivo effect of IAA on the RNase activity is of importance for the hormonal regulation of RNA metabolism and growth. The IAA-induced reduction in the enzyme activity involves cellular metabolism. The effect can be suspended by means of p-chloromercuribenzoate. A possible mechanism for the reduction is discussed.  相似文献   

6.
Helga Dahlhelm 《Planta》1969,86(3):224-234
Summary The auxin-induced cell elongation and the formation of indoleacetyl-aspartic acid (IAAsp) of pea epicotyl sections and Agrostemma hypocotyl sections are inhibited by heavy water. The formation of IAAsp requires a specific enzyme. The lack of IAAsp in D2O-treated plant tissues may be due to an influence of D2O on the induction or on the synthesis of that enzyme. Treatment of plant sections with synthetic IAAsp has no effect on the growth of the sections in D2O. Indole-3-acetic acid (IAA) increases the incorporation of 32P-orthophosphate into ribosomal and soluble RNA of pea epicotyl sections in H2O but not in D2O. The synthesis of ribosomal RNA is decreased by heavy water.The effects of IAA and D2O on the soluble proteins of pea sections have been studied by PAA-gel electrophoresis. D2O does not change the pattern of protein bands in comparison with the H2O-control, but prevents the probably IAA-induced alteration of the Rf-value of one protein band on the pherogram. It is assumed that the inhibition of auxin-induced reactions in the D2O-medium is due to the stabilizing effect of heavy water on allosteric proteins. The results of this work support the hypothesis that IAA acts as allosteric effector.  相似文献   

7.
After inoculation ofRhizobium lupini strain A98 andR. leguminosarum strain PRE into a medium containing IAA, growth was initially suppressed. However, when IAA was added in the course of the logarithmic phase, growth was not inhibited. Apparently, IAA affects primarily the lag phase cells.Neither adaptation ofRhizobium to IAA was observed, nor spontaneous breakdown or biological degradation of IAA.The lag phase prolongation depended on the ratio: amount of IA A/number of cells.The authors wish to thank Professor Dr. A. Quispel for his interest and valuable discussions.  相似文献   

8.
Indole‐3–acetic acid (IAA), an auxin plant hormone, is biosynthesized from tryptophan. The indole‐3–pyruvic acid (IPyA) pathway, involving the tryptophan aminotransferase TAA1 and YUCCA (YUC) enzymes, was recently found to be a major IAA biosynthetic pathway in Arabidopsis. TAA1 catalyzes the conversion of tryptophan to IPyA, and YUC produces IAA from IPyA. Using a chemical biology approach with maize coleoptiles, we identified 5–(4–chlorophenyl)‐4H‐1,2,4–triazole‐3–thiol (yucasin) as a potent inhibitor of IAA biosynthesis in YUC‐expressing coleoptile tips. Enzymatic analysis of recombinant AtYUC1‐His suggested that yucasin strongly inhibited YUC1‐His activity against the substrate IPyA in a competitive manner. Phenotypic analysis of Arabidopsis YUC1 over‐expression lines (35S::YUC1) demonstrated that yucasin acts in IAA biosynthesis catalyzed by YUC. In addition, 35S::YUC1 seedlings showed resistance to yucasin in terms of root growth. A loss‐of‐function mutant of TAA1, sav3–2, was hypersensitive to yucasin in terms of root growth and hypocotyl elongation of etiolated seedlings. Yucasin combined with the TAA1 inhibitor l –kynurenine acted additively in Arabidopsis seedlings, producing a phenotype similar to yucasin‐treated sav3–2 seedlings, indicating the importance of IAA biosynthesis via the IPyA pathway in root growth and leaf vascular development. The present study showed that yucasin is a potent inhibitor of YUC enzymes that offers an effective tool for analyzing the contribution of IAA biosynthesis via the IPyA pathway to plant development and physiological processes.  相似文献   

9.
  • Induced systemic resistance (ISR) is one of the indirect mechanisms of growth promotion exerted by plant growth‐promoting bacteria, and can be mediated by ethylene (ET). We assessed ET production and the expression of related genes in the Azospirillum–strawberry plant interaction.
  • Ethylene production was evaluated by gas chromatography in plants inoculated or not with A. brasilense REC3. Also, plants were treated with AgNO3, an inhibitor of ET biosynthesis; with 1‐aminocyclopropane‐1‐carboxylic acid (ACC), a precursor of ET biosynthesis; and with indole acetic acid (IAA). Plant dry biomass and the growth index were determined to assess the growth‐promoting effect of A. brasilense REC3 in strawberry plants. Quantitative real time PCR (qRT‐PCR) was performed to analyse relative expression of the genes Faetr1, Faers1 and Faein4, which encode ET receptors; Factr1 and Faein2, involved in the ET signalling pathway; Faacs1 encoding ACC synthase; Faaco1 encoding ACC oxidase; and Faaux1 and Faami1 for IAA synthesis enzymes.
  • Results showed that ET acts as a rapid and transient signal in the first 12 h post‐treatment. A. brasilense REC3‐inoculated plants had a significantly higher growth index compared to control plants. Modulation of the genes Faetr1, Faers1, Faein4, Factr1, Faein2 and Faaco1 indicated activation of ET synthesis and signalling pathways. The up‐regulation of Faaux1 and Faami1 involved in IAA synthesis suggested that inoculation with A. brasilense REC3 induces production of this auxin, modulating ET signalling.
  • Ethylene production and up‐regulation of genes associated with ET signalling in strawberry plants inoculated with A. brasilense REC3 support the priming activation characteristic of ISR. This type of resistance and the activation of systemic acquired resistance previously observed in this interaction indicate that both are present in strawberry plants, could act synergistically and increase protection against pathogens.
  相似文献   

10.
A crude enzyme preparation from mung bean cotyledons was separated into peroxidative and non-peroxidative IAA oxidase on a DEAE-cellulose column. Both fractions differed in their pH optima, Km and Vmax. The Km and Vmax of non-peroxidative IAA oxidase were higher than those of peroxidative IAA oxidase. Peroxidative IAA oxidase showed a linear increase in absorption at 247 and 254 nm after a short lag of 2–3 min. The addition of catalytic amounts of hydrogen peroxide eliminated the lag period and also enhanced the rate of IAA degradation. The non-peroxidative IAA oxidase fraction, however, did not exhibit any significant increase in absorption at 247 and 254 nm and showed a lag period of 5 min which was not affected by hydrogen peroxide. Instead, addition of the same catalytic amount of hydrogen peroxide inhibited the rate of IAA degradation. The peroxidative IAA oxidase fraction exhibited the reaction kinetics characteristic of peroxidase-catalysed IAA degradation. The rate of IAA oxidation by purified non-peroxidative IAA oxidase was very low. The slow rate of catalysis shown by non-peroxidative IAA oxidase appears to be due to the presence of inhibitor(s).  相似文献   

11.
Robert Cleland 《Planta》1970,95(3):218-226
Summary The inhibitors cycloheximide and puromycin have been used to examine the relationship between protein synthesis and wall extensibility, as measured with an Instron, in Avena coleoptile segments. Cycloheximide at 4 g/ml almost totally inhibits both auxin-induced cell elongation and protein synthesis with only a slight lag. Wall extensibility is unaffected by the inhibitor if auxin is absent. If added prior to auxin, cycloheximide prevents auxin-induced wall loosening while if added after auxin it causes a substantial decline in the wall extensibility. With puromycin there is a 2–4 hr lag before growth and wall loosening are inhibited. These results support the conclusions that the proteins needed for wall loosening are unstable, and that continued protein synthesis is necessary to maintain the wall loosening process.  相似文献   

12.
Red light inhibits the growth of etiolated pea internodes, causes a shift toward higher indoleacetic acid (IAA) concentrations in the IAA dose-response curve of excised sections, and promotes the synthesis in intact internodes of kaempferol-3-triglucoside. Gibberellic acid (GA3) prevents all 3 effects, the first effect substantially and the last 2 completely. This suggests GA3 blockage of an early or basic event initiated by the active form of phytochrome. The red light-induced shift in the IAA dose-response curve of excised sections is consistent with a light-induced increase in the activity of an IAA destruction system, since the magnitude of the red light inhibition varied with IAA concentration. The red light and GA3 effects on growth and on flavonoid synthesis are consistent with the view that phytochrome may control growth by regulating the synthesis of phenolic compounds which act as cofactors in an IAA-oxidase system. GA3 reversal of the red light-induced shift in the IAA dose-response curve involves both growth promotion and inhibition by GA3 at different IAA concentrations and this, together with the GA3 reversal of light-induced flavonoid synthesis, supports the suggested regulatory role of phenolic compounds in growth.  相似文献   

13.
An avirulent strain of Pseudomonas solanacearum could inhibit the growth of its virulent parent on L-tryptophan-containing glycerol nutrient agar (TGNA) medium. It was, also, capable of inhibiting, though to a less degree, Corynebacterium fascians and Pseudomonas marginata, out of five other bacterial species tested. While P. marginata was partially inhibited by the avirulent strain it was totally insensitive to indole-3-acetic acid (IAA) up to a concentration of 300 μg/ml. Additionally, Erwinia carotovora var. atroseptica which was totally unaffected by the avirulent strain showed a spectrum of sensitivity to IAA concentrations close to that of the virulent strain. No DNA, RNA, or IAA could ever be detected in the inhibition area and, thus, it is almost certain that the inhibiting agent produced by the avirulent strain is not IAA as was previously speculated. This inhibiting agent was insensitive to autoclaving and to the enzymes, pronase, trypsin, DNAse, and RNAse. P. solanacearum bacteriocin was detected by polyacrylamide gel electrophoresis in the medium near the avirulent growth line and not throughout the inhibition area. This supports the conclusion that bacteriocin alone cannot be held responsible for the inhibition phenomenon observed and leaves the nature of this inhibiting agent unknown.  相似文献   

14.
Darkness and GA3 stimulate the elongation of the first internodebut inhibit the production of roots while IAA inhibits internodalelongation but promotes the production of roots on epiphyllousbuds of Bryophylhum tubiflorum. Cycloheximide inhibits both,implicating the synthesis of proteins in the growth of bothroot and shoot. Even pre-treatment of buds with cycloheximidefor 4 h inhibits rooting as well as internodal elongation whenthese are subsequently transferred to IAA or GA3. On the otherhand, pre-treatment with IAA or GA3 even for 8 h does not alleviatethe inhibitory effect of cycloheximide suggesting that thereis a lag period between the application of these regulatorsand the synthesis of proteins caused by them.  相似文献   

15.
Summary A linear displacement transducer has been used to monitor the growth of a column of Avena coleoptile segments in flowing solution. IAA at 10-5M in phosphate buffer of pH7 promotes growth after a latent period of 10.9 min, the initial maximum growth rate occurring after 25 min. Simultaneous treatment with 10-5 M ABA does not affect either the latent period or the initial maximum growth rate in response to the IAA treatment, but subsequently gives rise to an inhibition of growth detectable after 30 min. In contrast, pretreatment with ABA for 100 min increases the duration of the latent period and reduces the initial maximum growth rate. Removal of the ABA rapidly relieves the inhibition of IAA-induced growth but a growth rate comparable to that of material treated only with IAA is never attained. Studies using 2-[14C]ABA and 1-[14C]IAA suggest that the latent period before ABA inhibition of growth is detectable is not due to a lag in ABA uptake, and that ABA is not acting by reducing IAA uptake.  相似文献   

16.
17.
Homogenates of Chironomus cells synthesize chitin as effectively as intact cells. Chitin is produced in a dose-dependent manner, when GlcN, GlcNAc, or UDP-GlcNAc is used as precursor. Due to the lability of UDP-GlcNAc incorporation of this substrate is underestimated. No allosteric effect is observed when GlcN or GlcNAc is used as a substrate. Chitin synthesis is stimulated by Mg2+ and inhibited by uridine monophosphate (UMP), uridine diphosphate (UDP), and uridine triphosphate (UTP). The apparent temperature optimum is 30°C, the apparent pH optimum is 5.5–6. Addition of the chitinase inhibitor allosamidin does not enhance chitin synthesis significantly. The time course of chitin formation reveals a lag period of about 12 h, which can be overcome by trypsin treatment. Addition of protease inhibitors prevents chitin synthesis.  相似文献   

18.
The effectiveness of the inhibitor, canavanine, was evaluated by examining its action in Canavalia ensiformis and Glycine max. Isolated roots were grown in culture tubes containing White's medium plus canavanine or arginine. A differential effect of canavanine on the incorporation of precursors of DNA, RNA, and protein was found, which is assumed to be related to the ability of the plant to utilize canavanine in reactions typically involving arginine. Canavanine was not found to affect DNA, RNA, or protein synthesis in Canavalia ensiformis, a plant in which this amino acid is synthesized naturally. In the canavanine sensitive species, Glycine max, of the same subfamily Papilionoideae, canavanine was observed to inhibit strongly DNA, RNA, and protein synthesis. A primary inhibition of the RNA synthesizing system is suggested. The data indicate the canavanine inhibitions are more complex than a simple competition with arginine in protein synthesis.  相似文献   

19.
At 25°C rifampicin strongly stimulates the synthesis of the dinucleotide pppA-U catalyzed by the DNA-dependent RNA polymerase from Escherichia coli. If the antibiotic is added to the enzyme during the synthesis of RNA the stimulatory effect on the dinucleotide synthesis is distinctly retarded as is its inhibitory action on RNA synthesis. It is proposed that this lag period is due to a retardation of the binding of rifampicin to RNA polymerase which is required for its action. Because of this slower binding rifampicin — although an inhibitor of RNA chain elongation — mimics the action of an inhibitor of RNA chain initiation.  相似文献   

20.
The effects of fusicoccin (FC) on growth and ethylene synthesis of tomato (Lycopersicon esculentum Mill.) hypocotyls were compared to those of indole-3-acetic acid (IAA). Fusicoccin promoted both growth and ethylene production maximally at <2M. Growth was stimulated to a slightly greater extent by FC as compared to IAA, while ethylene synthesis rates in response to FC were about 50% less than those induced by IAA. Cycloheximide (0.5 M) inhibited auxin-induced growth by 80% but had no effect on FC-induced growth; ethylene production was inhibited to the same extent (58%) when induced by either IAA or FC. Both IAA and FC caused tissue contents of 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-ACC to increase, indicating that like IAA, FC induces ethylene synthesis by stimulating the formation of ACC. Orthovanadate, a potent inhibitor of proton-translocating plasma membrane ATPases, reduced both IAA- and FC-induced growth and ethylene synthesis at concentrations less than 1 mM, with ethylene synthesis being approximately 10 times more sensitive to inhibition than growth. Vanadate did not affect tissue ACC levels, slightly reduced total ACC production, and inhibited conversion of ACC to ethylene. However, significant inhibition of in vivo ethylene-forming enzyme activity required high concentrations of vanadate (1 mM) and was less effective than inhibition by cobaltous ion. The site of action of vanadate in inhibiting ethylene synthesis remains unclear, but the ion did not prevent the elevation of tissue ACC levels in response to IAA or FC. It is unlikely, therefore, that stimulation of plasma membrane H+-ATPase activity is required for the induction of ACC synthase by IAA and FC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号