首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Escherichia coli alkyl hydroperoxide reductase subunit C (AhpC) is a peroxiredoxin that detoxifies peroxides. Here we show an additional role for AhpC in cellular iron metabolism of E. coli. Deletion of ahpC resulted in reduced growth and reduced accumulation of iron by cells grown in low-iron media. Liquid chromatography-mass spectroscopy (LC-MS) analysis of culture supernatants showed that the ahpC mutant secreted much less enterobactin, the siderophore that chelates and transports ferric iron under iron-limiting conditions, than wild-type E. coli did. The ahpC mutant produced less 2,3-dihydroxybenzoate, the intermediate in the enterobactin biosynthesis pathway, and providing 2,3-dihydroxybenzoate restored wild-type growth of the ahpC mutant. These data indicated that the defect was in an early step in enterobactin biosynthesis. Providing additional copies of entC, which functions in the first dedicated step of enterobactin biosynthesis, but not of other enterobactin biosynthesis genes, suppressed the mutant phenotype. Additionally, providing either shikimate or a mixture of para-aminobenzoate, tryptophan, tyrosine, and phenylalanine, which, like enterobactin, are synthesized from the precursor chorismate, also suppressed the mutant phenotype. These data suggested that AhpC affected the activity of EntC or the availability of the chorismate substrate.  相似文献   

2.
An outer membrane preparation from cells of Escherichia coli K-12 grown in low iron medium was found to retain ferric enterobactin binding activity following solubilization in a Tris-HCl, Na2EDTA buffer containing Triton X-100. Activity was measured by means of a DEAE-cellulose column which separated free and receptor bound ferric enterobactin. The binding activity was greatly reduced in preparations obtained from cells grown in iron rich media or from cells of a colicin B resistant mutant grown in either high or low iron media. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis enabled correlation of this lack of activity to a single band missing in the outer membrane profile of the colicin B mutant. Evidence was obtained for in vitro competition between ferric enterobactin and colicin B for the extracted receptor. The binding specificity of the extracted receptor was examined by competition between ferric enterobactin and several iron chelates including a carbocyclic analogue of enterobactin, cis-1,5,9-tris(2,3-dihydroxybenzamido)cyclododecane. The ferric form of the latter compound supported growth of siderophore auxotrophs, apparently without hydrolysis to dihydroxybenzoic acid and resynthesis into enterobactin. These data may require revision of the accepted mechanism of enterobactin mediated iron utilization.  相似文献   

3.
Vibrio cholerae, the causative agent of cholera, has an absolute requirement for iron. It transports the catechol siderophores vibriobactin, which it synthesizes and secretes, and enterobactin. These siderophores are transported across the inner membrane by one of two periplasmic binding protein-dependent ABC transporters, VctPDGC or ViuPDGC. We show here that one of these inner membrane transport systems, VctPDGC, also promotes iron acquisition in the absence of siderophores. Plasmids carrying the vctPDGC genes stimulated growth in both rich and minimal media of a Shigella flexneri mutant that produces no siderophores. vctPDGC also stimulated the growth of an Escherichia coli enterobactin biosynthetic mutant in low iron medium, and this effect did not require feoB, tonB or aroB. A tyrosine to phenylalanine substitution in the periplasmic binding protein VctP did not alter enterobactin transport, but eliminated growth stimulation in the absence of a siderophore. These data suggest that the VctPDGC system has the capacity to transport both catechol siderophores and a siderophore-free iron ligand. We also show that VctPDGC is the previously unidentified siderophore-independent iron transporter in V. cholerae, and this appears to complete the list of iron transport systems in V. cholerae.  相似文献   

4.
The regulatory properties of three key enzymes in the phenylalanine biosynthetic pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase (DAHP synthetase) [EC 4.1.2.15], chorismate mutase [EC 5.4.99.5], and prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] were compared in three phenylalanine-excreting mutants and the wild strain of Brevibacterium flavum. Regulation of DAHP synthetase by phenylalanine and tyrosine in these mutants did not change at all, but the specific activities of the mutant cell extracts increased 1.3- to 2.8-fold, as reported previously (1). Chorismate mutase activities in both the wild and the mutant strains were cumulatively inhibited by phenylalanine and tyrosine and recovered with tryptophan, while the specific activities of the mutants increased 1.3- to 2.8-fold, like those of DAHP synthetase. On the other hand, the specific activities of prephenate dehydratase in the mutant and wild strains were similar, when tyrosine was present. While prephenate dehydratase of the wild strain was inhibited by phenylalanine, tryptophan, and several phenylalanine analogues, the mutant enzymes were not inhibited at all but were activated by these effectors. Tyrosine activated the mutant enzymes much more strongly than the wild-type enzyme: in mutant 221-43, 1 mM tyrosine caused 28-fold activation. Km and the activation constant for tyrosine were slightly altered to a half and 6-fold compared with the wild-type enzyme, respectively, while the activation constants for phenylalanine and tryptophan were 500-fold higher than the respective inhibition constants of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 x 10(5), a half of that of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 X 10(5) a half of that of the wild type enzyme, while in the presence of tyrosine, phenylalanine, or tryptophan, it increased to that of the wild-type enzyme. Immediately after the mutant enzyme had been activated by tyrosine and then the tyrosine removed, it still showed about 10-fold higher specific activity than before the activation by tyrosine. However, on standing in ice the activity gradually fell to the initial level before the activation by tyrosine. Ammonium sulfate promoted the decrease of the activity. On the basis of these results, regulatory mechanisms for phenylalanine biosynthesis in vivo as well as mechanisms for the phenylalanine overproduction in the mutants are discussed.  相似文献   

5.
Enterobactin-mediated iron transport in Pseudomonas aeruginosa.   总被引:21,自引:9,他引:12       下载免费PDF全文
K Poole  L Young    S Neshat 《Journal of bacteriology》1990,172(12):6991-6996
A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin. Apparently, at least two uptake systems for ferrienterobactin exist in P. aeruginosa: one of higher affinity which is specifically inducible by enterobactin under iron-limiting conditions and the second, of lower affinity, which is also inducible under iron-limiting conditions but is independent of enterobactin for induction.  相似文献   

6.
Tyrosine countertransport was used to demonstrate the hormonal stimulation of neutral amino acid transport across the lysosomal membrane of FRTL-5 cells. Cells grown with thyrotropin (1 X 10(-10) M) had 7-fold (+/- S.E.) higher tyrosine countertransport activity in their lysosomes than cells grown without thyrotropin. Thyrotropin also stimulated the uptake into tyrosine-loaded lysosomes of other neutral amino acids recognized by the tyrosine carrier, namely, phenylalanine (3-fold) and leucine (6-fold). In contrast lysosomal cystine countertransport was not affected by thyrotropin. Addition of thyrotropin to cells grown without thyrotropin showed that the stimulation of tyrosine counter-transport (a) required at least 48 h to reach the level of the thyrotropin-supplemented cells, (b) depended upon protein synthesis, since cycloheximide (20 microM) was inhibitory, and (c) depended upon RNA synthesis, since actinomycin D (1 nM) was inhibitory. Cells grown without thyrotropin but with dibutyryl cyclic AMP (1 mM) or cholera toxin (1 nM) exhibited enhanced lysosomal countertransport of tyrosine, suggesting that cyclic AMP may act as a messenger. This represents the first demonstration of hormonal responsiveness in a lysosomal transport system and may reflect the importance of salvage and reutilization of lysosomal degradation products for the thyroid epithelial cell.  相似文献   

7.
TolC is the outer membrane component of tripartite efflux pumps, which expel proteins, toxins and antimicrobial agents from Gram‐negative bacteria. Escherichia coli tolC mutants grow well and are slightly elongated in rich media but grow less well than wild‐type cells in minimal media. These phenotypes have no physiological explanation as yet. Here, we find that tolC mutants have highly aberrant shapes when grown in M9‐glucose medium but that adding iron restores wild‐type morphology. When starved for iron, E. coli tolC mutants synthesize but cannot secrete the siderophore enterobactin, which collects in the periplasm. tolC mutants unable to synthesize enterobactin display no growth or morphological defects, and adding exogenous enterobactin recreates these aberrations, implicating this compound as the causative agent. Cells unable to import enterobactin across the outer membrane grow normally, whereas cells that import enterobactin only to the periplasm become morphologically aberrant. Thus, tolC mutants grown in low iron conditions accumulate periplasmic enterobactin, which impairs bacterial morphology, possibly by sequestering iron and inhibiting an iron‐dependent reaction involved in cell division or peptidoglycan synthesis. The results also highlight the need to supply sufficient iron when studying TolC‐directed export or efflux, to eliminate extraneous physiological effects.  相似文献   

8.
The influence of the growth rate on outer membrane protein composition and enterobactin production was studied with Klebsiella pneumoniae grown under conditions of iron limitation in chemostats. More enterobactin was produced at fast (D = 0.4 h-1) and slow (D = 0.1 h-1) growth rates in continuous cultures than in either logarithmic- or stationary-phase batch cultures. When the growth rate was controlled under conditions of carbon limitation and the iron level was reduced to 0.5 microM, the iron-regulated outer membrane proteins and enterobactin were induced at the fast growth rate. At the slow growth rate, although the iron-regulated outer membrane proteins were barely visible, a significant level of enterobactin was still produced. These results suggest that under conditions of either carbon or iron limitation, the growth rate can influence the induction of the high-affinity iron uptake system of K. pneumoniae. Other outer membrane proteins, including a 39-kilodalton peptidoglycan-associated protein, were found to vary with the growth rate and nutrient limitation.  相似文献   

9.
A cell line of Eschscholtzia californica selected for meta-fluorotyrosine (MFT) tolerance was found to have 10-fold increased levels of phenylalanine and tyrosine compared to the parent line, while most other amino acids were only increased 2-fold. Tracer experiments with shikimic acid in the presence of MFT showed that the biosynthesis of the aromatic amino acids was not impaired in the tolerant line. Feeding experiments with phenylalanine, tyrosine, or shikimic acid also revealed a reduced turnover of the pools of the aromatic amino acids in the variant. Thus undisturbed de novo biosynthesis of the aromatic amino acids and dilution of toxic effects of MFT by the enlarged pool sizes seemed to be the main reason for the acquired tolerance. Despite the enlarged availability of the precursor tyrosine, formation of the benzophenanthridine alkaloids was enhanced neither in the growth nor in the production medium.  相似文献   

10.
Tobacco, rice, carrot and tomato tissue cultures were grown in liquid media containing l-phenylalanine or l-tyrosine, or both together. The addition of these amino acids increased their respective cellular levels (4–20 fold), but did not lower the level of chorismate mutase, an enzyme in the biosynthetic pathway of phenylalanine and tyrosine. These results indicate that the biosynthesis of phenylalanine and tyrosine in cultured plant cells is not regulated by repression of the synthesis of chorismate mutase by phenylalanine or tyrosine.  相似文献   

11.
12.
13.
A number of mutants of Salmonella typhimurium were isolated which are blocked in the biosynthesis of enterobactin, an iron chelator that is secreted by the wild-type bacteria when they are grown on low iron media. One class of these enb mutants accumulates the enterobactin precursor 2,3-dihydroxybenzoic acid, and another class does not accumulate any detectable catechol precursor. The enb mutants grow very well on a glucose-mineral salts medium. Addition of citrate, itself an iron chelator, to the medium drastically inhibits growth unless the medium is supplemented with enterobactin or iron salts. Citrate inhibits iron uptake from the medium by enb mutants; enterobactin counteracts this inhibition and also, by itself, increases iron uptake. Thus, the apparent function of enterobactin is to promote the absorption of iron from the medium by the bacteria. Transduction experiments showed that the genes for enterobactin biosynthesis are closely linked on the S. typhimurium chromosome. It is suggested that they form an operon which is repressed by the presence of iron. S. typhimurium can utilize the iron chelate ferrichrome. (Deferriferrichrome is a cyclic hexapeptide that is produced by some fungi but not by S. typhimurium.) The enb mutants use ferrichrome as an effective growth factor.  相似文献   

14.
15.
Lysates of Escherichia coli Ymel obtained from cultures grown in the absence of tryptophan in minimal medium supplemented with 0.1% casein hydrolysate show an approximate fivefold increase in steady-state specific activity of both anthranilate synthetase and tryptophan synthetase A protein relative to cultures grown in nonsupplemented medium. In the presence of repressing levels of exogenous tryptophan, growth of cultures in casein hydrolysate-supplemented medium results in a noncoordinate enhancement of repression of 10-fold for anthranilate synthetase and twofold for tryptophan synthetase A protein. Similar, but less pronounced, effects are shown for strain W3110. Strains possessing tryptophan regulator gene mutations do not exhibit this first effect, but do yield an approximate twofold decrease in specific activity of both enzymes when grown in medium supplemented with tryptophan and casein hydrolysate. A stimulation of derepression of both enzymes in strain Ymel equivalent to that induced by casein hydrolysate can be reproduced by growth in minimal medium supplemented with threonine, phenylalanine, tyrosine, serine, glutamic acid, and glutamine. Doubling time in this medium is not significantly different from that in minimal medium. An enhancement of repression which partially mimics that observed on growth in medium supplemented with tryptophan plus casein hydrolysate is obtained when Ymel is grown on medium supplemented with tryptophan plus methionine. Threonine or phenylalanine plus tyrosine as separate medium supplements are independently capable of producing a 1.4-fold or 3.4-fold stimulation, respectively, but in combination only the phenylalanine plus tyrosine effect is manifested unless serine and glutamic acid or glutamine are included. Our data show that expression of the tryptophan biosynthetic enzymes can be significantly influenced in vivo as a result of growth in medium supplemented with a variety of amino acids.  相似文献   

16.
Iron transport across polarized intestinal epithelium was studied by using Caco-2 cells grown in bicameral chambers. When cells were grown under conditions of low, normal, or high iron concentration not only was the iron content of the cells markedly altered but the low iron cells exhibited a nearly 2-fold increase in transepithelial electrical resistance (TEER). 59Fe uptake from the apical surface into cells and transport into the basal chamber was affected both by the valency of the iron and the iron status of the cells. Uptake from 59Fe(II)-ascorbate was about 600 pmol 59Fe/h per mg protein, increased about 2-fold in low iron cells, and was about 13-200-fold greater than uptakes from 59Fe(III) chelated to nitrilotriacetic acid, BSA, or citrate. Transport into the basal chamber from 59Fe(II)-ascorbate was 3.7 +/- 1.7 pmol/h per cm2 for Fe-deficient cells vs. 0.72 +/- 0.1 pmol/h per cm2 for normal-Fe cells and from 59Fe(III)-BSA 1.1 +/- 0.2 pmol/h per cm2 vs. 0.3 +/- 0.03 pmol/h per cm2 for deficient vs. normal iron cells, respectively. The greater transport of iron both from Fe(II) and in iron deficient cells supports the use of the Caco-2 cells as a model for iron transport.  相似文献   

17.
Summary A transient increase in rosmarinic acid (RA) content in cultured cells of Lithospermum erythrorhizon was observed after addition of yeast extract (YE) to the suspension cultures, reaching a maximum at 24 hr. The highest increase of the RA content (2.5-fold) was obtained when 6-day-old cells in the exponential growth phase were treated with YE. Preceding the induced RA accumulation, phenylalanine ammonia-lyase (PAL) activity increased rapidly, whereas tyrosine aminotransferase (TAT) activity was largely unaffected by the treatment. The incorporation of both 14C-phenylalanine and 14C-tyrosine into RA was enhanced in the YE-treated cells, consistent with increased synthesis of the ester.Abbreviations 2,4-D 2,4 dichlorophenoxyacetic acid - PAL phenylalanine ammonia-lyase - TAT tyrosine aminotransferase - RA rosmarinic acid - YE yeast extract  相似文献   

18.
The Escherichia coli ferric enterobactin esterase gene (fes) was cloned into the vector pGEM3Z under the control of the T7 gene 10 promoter and overexpressed to approximately 15% of the total cellular protein. The ferric enterobactin esterase (Fes) enzyme was purified as a 43-kDa monomer by gel filtration chromatography. Purified Fes preparations were examined for esterase activity on enterobactin and its metal complexes and for iron reduction from ferric complexes of enterobactin and 1,3,5-tris(N,N',N"-2,3-dihydroxybenzoyl)aminomethylbenzene (MECAM), a structural analog lacking ester linkages. Fes effectively catalyzed the hydrolysis of both enterobactin and its ferric complex, exhibiting a 4-fold greater activity on the free ligand. It also cleaved the aluminum (III) complex at a rate similar to the ferric complex, suggesting that ester hydrolysis of the ligand backbone is independent of any reductive process associated with the bound metal. Ferrous iron was released from the enterobactin complex at a rate similar to ligand cleavage indicating that hydrolysis and iron reduction are tightly associated. However, no detectable release of ferrous iron from the MECAM complex implies that, with these in vitro preparations, metal reduction depends upon, and is subsequent to, the esterase activity of Fes. These observations are discussed in relation to studies which show that such enterobactin analogs can supply growth-promoting iron concentrations to E. coli.  相似文献   

19.
1. Rates of appearance and oxidation of plasma L-leucine, L-phenylalanine and L-tyrosine, as well as conversion of plasma phenylalanine into plasma tyrosine, were determined in 90-120 g rats after overnight starvation and while receiving 115-120 mumol of L-phenylalanine/h. 2. In the post-absorptive state, plasma tyrosine and phenylalanine appearances were similar, despite the fact that 22% of plasma tyrosine appearance could be attributed to the hydroxylation of phenylalanine. 3. A constant infusion of 115-120 mumol of L-phenylalanine/h did not significantly alter plasma leucine kinetics, but increased appearance of plasma phenylalanine and tyrosine. The percentage of phenylalanine and tyrosine appearance that was oxidized increased from 12.1% and 24.4% to 37.3% and 48.0% respectively. In phenylalanine-loaded rats, 72% of plasma tyrosine appearance could be attributed to the conversion of phenylalanine. 4. Whole-body tyrosine oxidation measured from a continuous infusion of either L-[14C]tyrosine or L-[14C]phenylalanine differed by 165%. 5. It can be concluded that, in the post-absorptive state, phenylalanine hydroxylation makes a substantial contribution to the plasma appearance of tyrosine and is significantly increased when phenylalanine is administered. The disposal of excess infused phenylalanine is a result of a greater percentage of plasma phenylalanine being converted into tyrosine and a greater proportion of tyrosine being further oxidized. However, apparent tyrosine oxidation rates estimated from plasma tyrosine specific radioactivities and appearance of expired 14CO2 during administration of [14C]tyrosine are underestimates of true rates, in part because tyrosine generated from phenylalanine hydroxylation is catabolized without freely equilibrating with the plasma compartment.  相似文献   

20.
Abstract Pseudomonas aeruginosa is known to have an inducible uptake system for the enterobacterial siderophore enterobactin. In this work we have examined iron transport mediated by the biosynthetic precursor 2,3-dihydroxybenzoic acid and N -(2,3-dihydroxybenzoyl)- l -serine, a breakdown product of enterobactin. Iron complexed with 2,3-dihydroxybenzoyl-L-serine was transported into P. aeruginosa IA1 via a transport system which is energy-dependent and iron-repressible. The rate of transport was not altered by growing the cells in the presence of either pyoverdin or pyochelin, which have been shown previously to induce transport via that system. Growth of the cells in the presence of enterobactin did cause an increase in the rate of transport, indicating that the complex can be transported by the inducible enterobactin uptake system, but also that a separate system must exist. In contrast, transport of iron complexed with 2,3-dihydroxybenzoic acid was neither iron-repressible nor strongly energy-dependent, from which we conclude that there must be a novel mode of transport not characteristic of iron-siderophore transport systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号