首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Twelve populations of Escherichia coli B all lost D-ribose catabolic function during 2,000 generations of evolution in glucose minimal medium. We sought to identify the population genetic processes and molecular genetic events that caused these rapid and parallel losses. Seven independent Rbs(-) mutants were isolated, and their competitive fitnesses were measured relative to that of their Rbs(+) progenitor. These Rbs(-) mutants were all about 1 to 2% more fit than the progenitor. A fluctuation test revealed an unusually high rate, about 5 x 10(-5) per cell generation, of mutation from Rbs(+) to Rbs(-), which contributed to rapid fixation. At the molecular level, the loss of ribose catabolic function involved the deletion of part or all of the ribose operon (rbs genes). The physical extent of the deletion varied between mutants, but each deletion was associated with an IS150 element located immediately upstream of the rbs operon. The deletions apparently involved transposition into various locations within the rbs operon; recombination between the new IS150 copy and the one upstream of the rbs operon then led to the deletion of the intervening sequence. To confirm that the beneficial fitness effect was caused by deletion of the rbs operon (and not some undetected mutation elsewhere), we used P1 transduction to restore the functional rbs operon to two Rbs(-) mutants, and we constructed another Rbs(-) strain by gene replacement with a deletion not involving IS150. All three of these new constructs confirmed that Rbs(-) mutants have a competitive advantage relative to their Rbs(+) counterparts in glucose minimal medium. The rapid and parallel evolutionary losses of ribose catabolic function thus involved both (i) an unusually high mutation rate, such that Rbs(-) mutants appeared repeatedly in all populations, and (ii) a selective advantage in glucose minimal medium that drove these mutants to fixation.  相似文献   

3.
4.
Among mutants of Escherichia coli resistant to p-fluorophenylalanine (PFP) were some with constitutive expression of the phenylalanine biosynthetic operon (the pheA operon). This operon is repressed in the wild type by phenylalanine. The mutation in three of these mutants mapped in the aroH-aroD region of the E. coli chromosome at 37 min. A plasmid bearing wild-type DNA from this region restored p-fluorophenylalanine sensitivity and wild-type repression of the pheA operon. Analysis of subclones of this plasmid and comparison of its restriction map with published maps indicated that the mutations affecting regulation of the pheA operon lie in the structural genes for phenylalanyl-tRNA synthetase, pheST, probably in pheS. Thus, the pheST operon has a role in the regulation of phenylalanine biosynthesis, the most likely being that wild-type phenylalanyl-tRNA synthetase maintains a sufficient intracellular concentration of Phe-tRNA(Phe) for attenuation of the pheA operon in the presence of phenylalanine. A revised gene order for the 37-min region of the chromosome is reported. Read clockwise, the order is aroD, aroH, pheT, and pheS.  相似文献   

5.
We present a collection of 182 isogenic strains containing genetically linked antibiotic resistance elements located at approximately 1-min intervals around the Escherichia coli chromosome. At most positions both Tn10 (Tetr) and TN10kan (Kanr) elements are available, so that the collection contains a linked set of alternating antibiotic resistance markers. The map position of each insertion has been aligned to the E. coli genetic map as well as to the Kohara ordered clone bank. These strains are designed to be used in a rapid two-step mapping system in E. coli. In the first step, the mutation is localized to a 5- to 15-min region of the chromosome by Hfr mapping with a set of Hfr strains containing either Tn10 or Tn10kan elements located 20 min from their respective origins of transfer. In the second step, the mutation is localized to a 1-min region by P1 transduction, with a collection of isogenic insertion strains as donors. We discuss the uses of this collection of strains to map and eventually to clone a variety of mutations in E. coli.  相似文献   

6.
A 3.2-kb fragment encoding five genes, parCBA/DE, in two divergently transcribed operons promotes stable maintenance of the replicon of the broad-host-range plasmid RK2 in a vector-independent manner in Escherichia coli. The parDE operon has been shown to contribute to stabilization through the postsegregational killing of plasmid-free daughter cells, while the parCBA operon encodes a resolvase, ParA, that mediates the resolution of plasmid multimers through site-specific recombination. To date, evidence indicates that multimer resolution alone does not play a significant role in RK2 stable maintenance by the parCBA operon in E. coli. It has been proposed, instead, that the parCBA region encodes an additional stability mechanism, a partition system, that ensures that each daughter cell receives a plasmid copy at cell division. However, studies carried out to date have not directly determined the plasmid stabilization activity of the parCBA operon alone. An assessment was made of the relative contributions of postsegregational killing (parDE) and the putative partitioning system (parCBA) to the stabilization of mini-RK2 replicons in E. coli. Mini-RK2 replicons carrying either the entire 3.2-kb (parCBA/DE) fragment or the 2.3-kb parCBA region alone were found to be stably maintained in two E. coli strains tested. The stabilization found is not due to resolution of multimers. The stabilizing effectiveness of parCBA was substantially reduced when the plasmid copy number was lowered, as in the case of E. coli cells carrying a temperature-sensitive mini-RK2 replicon grown at a nonpermissive temperature. The presence of the entire 3.2-kb region effectively stabilized the replicon, however, under both low- and high-copy-number-conditions. In those instances of decreased plasmid copy number, the postsegregational killing activity, encoded by parDE, either as part of the 3.2-kb fragment or alone played the major role in the stabilization of mini-RK2 replicons within the growing bacterial population. Our findings indicate that the parCBA operon functions to stabilize by a mechanism other than cell killing and resolution of plasmid multimers, while the parDE operon functions solely to stabilize plasmids by cell killing. The relative contribution of each system to stabilization depends on plasmid copy number and the particular E. coli host.  相似文献   

7.
The glucitol operon (gutAEBDMRQ) of Escherichia coli encodes a phosphoenolpyruvate:sugar phosphotransferase system that metabolizes the hexitol D-glucitol (sorbitol). The functions for all but the last gene, gutQ, have been previously assigned. The high sequence similarity between GutQ and KdsD, a D-arabinose 5-phosphate isomerase (API) from the 3-deoxy-D-manno-octulosonate (KDO)-lipopolysaccharide (LPS) biosynthetic pathway, suggested a putative activity, but its role within the context of the gut operon remained unclear. Accordingly, the enzyme was cloned, overexpressed, and characterized. Recombinant GutQ was shown to indeed be a second copy of API from the E. coli K-12 genome with biochemical properties similar to those of KdsD, catalyzing the reversible aldol-ketol isomerization between D-ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P). Genomic disruptions of each API gene were constructed in E. coli K-12. TCM11[(deltakdsD)] was capable of sustaining essential LPS synthesis at wild-type levels, indicating that GutQ functions as an API inside the cell. The gut operon remained inducible in TCM7[(deltagutQ)], suggesting that GutQ is not directly involved in d-glucitol catabolism. The conditional mutant TCM15[(deltagutQdeltakdsD)] was dependent on exogenous A5P both for LPS synthesis/growth and for upregulation of the gut operon. The phenotype was suppressed by complementation in trans with a plasmid encoding a functional copy of GutQ or by increasing the amount of A5P in the medium. As there is no obvious obligatory role for GutQ in the metabolism of d-glucitol and there is no readily apparent link between D-glucitol metabolism and LPS biosynthesis, it is suggested that A5P is not only a building block for KDO biosynthesis but also may be a regulatory molecule involved in expression of the gut operon.  相似文献   

8.
Gene copy number effects in the mer operon of plasmid NR1.   总被引:4,自引:2,他引:2       下载免费PDF全文
The level of resistance to Hg2+ determined by the inducible mer operon of plasmid NR1 was essentially the same for three gene copy number variants in Escherichia coli, less in Proteus mirabilis, and intermediate in P. mirabilis "transitioned" to a high r-determinant gene copy number. Cell-free volatilization rates of radioactive mercury indicated increasing levels of intracellular mercuric reductase enzyme from low- to high-gene copy number forms in P. mirabilis and from low- to high-copy number forms in E. coli, but the additional enzyme in E. coli was effectively cryptic.  相似文献   

9.
Summary The genetic mapping and fine structure analysis of the d-ribose gene in Escherichia coli B/r has been studied. Findings indicate that the structural genes for the d-ribokinase and d-ribose permease map closely linked to the ara-leu region of the chromosome in contrast to their location in the isoleucine-valine region at 73.5 min in E. coli K12. Two polarity mutants, AB7 and AB36, were found to map at the left end of the d-ribokinase gene thus supporting the proposed d-ribokinase-d-ribose permease operon for the d-ribose catabolic enzymes in E. coli B/r.  相似文献   

10.
The nucleotide sequence of a 1455-base pair TaqI-HinfI fragment of the rbs operon of Escherichia coli K12 has been determined. It includes the 3' terminus of rbsB (the gene for ribose-binding protein) and the entire rbsK gene, encoding ribokinase. Potential consensus promoter sequences and a stable stem-loop structure are present in the rbsB-rbsK intercistronic region. The regulatory significance of these sequence features is discussed with respect to the rbs operon. rbsK has been cloned downstream from the Serratia marcescens trp promoter on a multicopy plasmid. Cells harboring this plasmid, when grown on minimal ribose plus ampicillin, express ribokinase at the level of 2% of the soluble protein, and induction with indoleacrylic acid raises ribokinase levels another 8-fold. Ribokinase has been purified to homogeneity (216 mumol/min/mg) from a strain harboring this plasmid. Protein sequence analyses of peptides generated by cyanogen bromide cleavage and o-iodosobenzoic acid cleavage confirmed the translation initiation site and the reading frame of the DNA sequence. Amino acid compositions of native ribokinase and the C-terminal dodecapeptide agree with the predicted amino acid compositions, confirming the accuracy of the DNA sequence and the translation termination site.  相似文献   

11.
We report the construction of an inducible, high-copy plasmid for the expression of foreign proteins in Escherichia coli. This plasmid, pPB1, combines the trc promoter, beta-galactosidase translation start site, and polylinker of pKK233-2 with the origin of replication region of pUC19. Replacement of the origin of replication of pKK233-2 results in a threefold increase in plasmid copy number of pPB1 compared with pKK233-2. Subclones of the cDNA for rabbit muscle fructose-1,6-bisphosphate aldolase (E.C. 4.1.2.13) in the two expression plasmids exhibit a comparable difference in copy number. An increase in protein expression measured by SDS-PAGE and aldolase specific activities reflects the increased copy number. Specific activities of aldolases in bacterial extracts differ approximately sixfold between the two expression plasmids in E. coli JM83. Aldolase A can compose up to 40% of the total protein in E. coli JM83 when expressed in pPB1, from which more than 100 mg of purified enzyme can be obtained per liter culture.  相似文献   

12.
Specific DNA probes from Escherichia coli K-12 were used to analyze the sequence divergence of the frd and ampC operons in various species of gram-negative bacteria. These operons code for the fumarate reductase complex and the chromosomal beta-lactamase, respectively. We demonstrate that the two operons show the same general pattern of divergence, although the frd operon is considerably more conserved than is the ampC operon. The major exception is Salmonella typhimurium LT2, which shows a strong homology to the E. coli frd probe but none to the E. coli ampC probe. The operons from Citrobacter freundii and Shigella sonnei were cloned and characterized by physical mapping, Southern hybridization, and protein synthesis in minicells. In S. sonnei, as in E. coli K-12, the frd and ampC operons overlap (T. Grundstr?m and B. Jaurin, Proc. Natl. Acad. Sci. U.S.A. 79:1111-1115, 1982). Only minor discrepancies between the two operons were found over the entire frd-ampC region. In C. freundii, the ampC and frd operons do not overlap, being separated by about 1,100 base pairs. Presumably the inducible property of the C. freundii chromosomal beta-lactamase is encoded by this 1,100-base-pair DNA segment.  相似文献   

13.
In Escherichia coli, efficient mutagenesis by UV requires the umuDC operon. A deficiency in umuDC activity is believed to be responsible for the relatively weak UV mutability of Salmonella typhimurium LT2 compared with that of E. coli. To begin evaluating this hypothesis and the evolutionary relationships among umuDC-related sequences, we cloned and sequenced the S. typhimurium umuDC operon. S. typhimurium umuDC restored mutability to umuD and umuC mutants of E. coli. DNA sequence analysis of 2,497 base pairs (bp) identified two nonoverlapping open reading frames spanning 1,691 bp that were were 67 and 72% identical at the nucleotide sequence level to the umuD and umuC sequences, respectively, from E. coli. The sequences encoded proteins whose deduced primary structures were 73 and 84% identical to the E. coli umuD and umuC gene products, respectively. The two bacterial umuDC sequences were more similar to each other than to mucAB, a plasmid-borne umuDC homolog. The umuD product retained the Cys-24--Gly-25, Ser-60, and Lys-97 amino acid residues believed to be critical for RecA-mediated proteolytic activation of UmuD. The presence of a LexA box 17 bp upstream from the UmuD initiation codon suggests that this operon is a member of an SOS regulon. Mu d-P22 inserts were used to locate the S. typhimurium umuDC operon to a region between 35.9 and 40 min on the S. typhimurium chromosome. In E. coli, umuDC is located at 26 min. The umuDC locus in S. typhimurium thus appears to be near one end of a chromosomal inversion that distinguishes gene order in the 25- to 35-min regions of the E. coli and S. typhimurium chromosomes. It is likely, therefore, that the umuDC operon was present in a common ancestor before S. typhimurium and E. coli diverged approximately 150 million years ago. These results provide new information for investigating the structure, function, and evolutionary origins of umuDC and for exploring the genetic basis for the mutability differences between S. typhimurium and E. coli.  相似文献   

14.
15.
The tricarboxylate transport operon (tctI) was cloned in Escherichia coli as a 12-kilobase (kb) fragment from an EcoRI library of the Salmonella typhimurium chromosome in lambda gtWES. It was further subcloned as a 12-kb fragment into pACYC184 and as an 8-kb fragment into pBR322. By insertional mutagenesis mediated by lambda Tn5, restriction mapping, and phenotypic testing, the tctI operon was localized to a 4.5-kb region. The tctC gene which encodes a periplasmic binding protein (C protein) was located near the center of the insert. E. coli/tctI clones on either multicopy or single-copy vectors grew on the same tricarboxylates as S. typhimurium, although unusually long growth lags were observed. E. coli/tctI clones exhibited similar [14C]fluorocitrate transport kinetics to those of S. typhimurium, whereas E. coli alone was virtually impermeable to [14C]fluorocitrate. The periplasmic C proteins (C1 and C2 isoelectric forms) were produced in prodigious quantities from the cloned strains. Motile E. coli/tctI clones were not chemotactic toward citrate, whereas tctI deletion mutants of S. typhimurium were. Taken together, these observations indicate that tctI is not an operon involved in chemotaxis.  相似文献   

16.
17.
Septicemic Escherichia coli 4787 (O115: K-: H51: F165) of porcine origin possess gene clusters related to extraintestinal E. coli fimbrial adhesins. This strain produces two fimbriae: F165(1) and F165(2). F165(1) (Prs-like) belongs to the P fimbrial family, encoded by foo operon and F165(2) is a F1C-like encoded by fot operon. Data from this study suggest that these two operons are part of two PAIs. PAI I(4787) includes a region of 20 kb, which not only harbors the foo operon but also contains a potential P4 integrase gene and is located within the pheU tRNA gene, at 94 min of the E. coli chromosome. PAI II(4787) includes a region of over 35 kb, which harbors the fot operon, iroBCDEN gene clusters, as well as part of microcin M genes and nonfunctional mobility genes. PAI II(4787) is found between the proA and yagU at 6 min of the E. coli chromosome.  相似文献   

18.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

19.
We investigated the structural, functional, and regulatory properties of the Shigella dysenteriae tryptophan (trp.) operon in transduction hybrids in which the cysB-trp-region of Escherichia coli is replaced by the corresponding region from S. dysenteriae. Tryptophan biosynthesis was largely blocked in the hybrids, although the order of the structural genes was identical with that of E. coli. Nutritional tests and enzyme assays revealed that the hybrids produced a defective anthranilate synthetase (ASase). Deletion mapping identified two distinct sites in trpE, each of which was partially responsible for the instability and low activity of ASase. We also discovered a pleiotropic site trpP (S) that maps outside the structural gene region and is closely linked to the S. dysenteriae trp operator. trpP (S) reduced the rate of trp messenger ribonucleic acid synthesis, and consequently trp enzyme levels, 10-fold relative to wild-type E. coli. In recombinants in which the structural genes of E coli were under the control of the S. dysenteriae promoter, enzyme levels were also reduced 10-fold. In some fast-growing revertants of the original hybrids, the rates of trp messenger ribonucleic acid synthesis and levels of tryptophan synthetase were restored to values characteristic of wild-type E.coli. Thus, the Trp auxotrophy associated with the S dysenteriae trp operon derives from the combination of a defective ASase and decreased expression of the entire operon imposed by trpP (S).  相似文献   

20.
A new system has been developed for generating recombinant adenoviruses by Tn7-mediated transposition in E. coli. Low copy number E. coli plasmids containing a full-length adenoviral genome with lacZattTn7 replacing E1 have been constructed. The adenovirus plasmid or admid, as well as high copy number progenitors, were stably maintained in E. coli strain DH10B. Several transfer vectors containing a mammalian expression cassette flanked by Tn7R and Tn7L were used as donors to transpose the mini-Tn7 into the E1 region of the adenoviral genome. Transposed recombinant admids are readily identified by their beta-galactosidase phenotype. Transfection of admid DNA into producer cells resulted in the efficient production of infectious adenovirus. This easy-to-use, efficient system generates pure, clonal stocks of recombinant adenovirus without successive rounds of plaque purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号