首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: In animal cells, cytokinesis begins shortly after the sister chromatids move to the spindle poles. The inner centromere protein (Incenp)has been implicated in both chromosome segregation and cytokinesis, but it is not known exactly how it mediates these two distinct processes. RESULTS: We identified two Caenorhabditis elegans proteins, ICP-1 and ICP-2, with significant homology in their carboxyl termini to the corresponding region of vertebrate Incenp. Embryos depleted of ICP-1 by RNA-mediated interference had defects in both chromosome segregation and cytokinesis. Depletion of the Aurora-like kinase AIR-2 resulted in a similar phenotype. The carboxy-terminal region of Incenp is also homologous to that in Sli15p, a budding yeast protein that functions with the yeast Aurora kinase Ipl1p. ICP-1 bound C. elegans AIR-2 in vitro, and the corresponding mammalian orthologs Incenp and AIRK2 could be co-immunoprecipitated from cell extracts. A significant fraction of embryos depleted of ICP-1 and AIR-2 completed one cell division over the course of several cell cycles. ICP-1 promoted the stable localization of ZEN-4 (also known as CeMKLP1), a kinesin-like protein required for central spindle assembly. CONCLUSIONS: ICP-1 and AIR-2 are part of a complex that is essential for chromosome segregation and for efficient completion of cytokinesis. We propose that this complex acts by promoting dissolution of sister chromatid cohesion and the assembly of the central spindle.  相似文献   

2.
Defects in chromosome condensation, segregation or cytokinesis during mitosis disrupt genome integrity and cause organismal death or tumorigenesis. The conserved kinase AIR-2/Aurora B is required for normal execution of all these important mitotic events in Caenorhabditis elegans. TLK-1 has been recently shown to be a substrate and activator of AIR-2 in the presence of another AIR-2 activator ICP-1/INCENP, and to cooperate with AIR-2 to ensure proper mitotic chromosome segregation. However, whether TLK-1 may contribute to chromosome condensation or cytokinesis is unclear. A time-lapse microscopy analysis showed that tlk-1 mutants are defective in chromosome condensation and cytokinesis, in addition to chromosome segregation, during mitosis. Our data indicate that TLK-1 contributes to chromosome condensation and segregation, at least in part, in a manner that is distinct from the ICP-1-mediated mechanism and does not involve loading AIR-2 or condensin proteins to mitotic chromosomes. Moreover, TLK-1 functions in cytokinesis by localizing AIR-2 to the midzone microtubules. The localization pattern of TLK-1 is different from those of ICP-1 and AIR-2, revealing differences in dynamic regulation and association of TLK-1 and ICP-1 towards AIR-2 in vivo. Interestingly, human TLK2 could functionally substitute for tlk-1, suggesting that the mitotic roles of TLK members might be evolutionarily conserved.  相似文献   

3.
During cytokinesis of animal cells, the mitotic spindle plays at least two roles. Initially, the spindle positions the contractile ring. Subsequently, the central spindle, which is composed of microtubule bundles that form during anaphase, promotes a late step in cytokinesis. How the central spindle assembles and functions in cytokinesis is poorly understood. The cyk-4 gene has been identified by genetic analysis in Caenorhabditis elegans. Embryos from cyk-4(t1689ts) mutant hermaphrodites initiate, but fail to complete, cytokinesis. These embryos also fail to assemble the central spindle. We show that the cyk-4 gene encodes a GTPase activating protein (GAP) for Rho family GTPases. CYK-4 activates GTP hydrolysis by RhoA, Rac1, and Cdc42 in vitro. RNA-mediated interference of RhoA, Rac1, and Cdc42 indicates that only RhoA is essential for cytokinesis and, thus, RhoA is the likely target of CYK-4 GAP activity for cytokinesis. CYK-4 and a CYK-4:GFP fusion protein localize to the central spindle and persist at cell division remnants. CYK-4 localization is dependent on the kinesin-like protein ZEN-4/CeMKLP1 and vice versa. These data suggest that CYK-4 and ZEN-4/CeMKLP1 cooperate in central spindle assembly. Central spindle localization of CYK-4 could accelerate GTP hydrolysis by RhoA, thereby allowing contractile ring disassembly and completion of cytokinesis.  相似文献   

4.
BACKGROUND: Epithelial tubes are a key component of organs and are generated from cells with distinct apico-basolateral polarity. Here, we describe a novel function during tubulogenesis for ZEN-4, the Caenorhabditis elegans ortholog of mitotic kinesin-like protein 1 (MKLP1), and CYK-4, which contains a RhoGAP (GTPase-activating protein) domain. Previous studies revealed that these proteins comprise centralspindlin (a complex that functions during mitosis to bundle microtubules), construct the spindle midzone, and complete cytokinesis. RESULTS: Our analyses demonstrate that ZEN-4/MKLP1 functions postmitotically to establish the foregut epithelium. Mutants that lack ZEN-4/MKLP1 express polarity markers but fail to target these proteins appropriately to the cell cortex. Affected proteins include PAR-3/Bazooka and PKC-3/atypical protein kinase C at the apical membrane domain, and HMR-1/cadherin and AJM-1 within C. elegans apical junctions (CeAJ). Microtubules and actin are disorganized in zen-4 mutants compared to the wild-type. CONCLUSION: We suggest that ZEN-4/MKLP1 and CYK-4/RhoGAP regulate an early step in epithelial polarization that is required to establish the apical domain and CeAJ.  相似文献   

5.
A late step in cytokinesis requires the central spindle, which forms during anaphase by the bundling of antiparallel nonkinetochore microtubules. Microtubule bundling and completion of cytokinesis require ZEN-4/CeMKLP-1, a kinesin-like protein, and CYK-4, which contains a RhoGAP domain. We show that CYK-4 and ZEN-4 exist in a complex in vivo that can be reconstituted in vitro. The N terminus of CYK-4 binds the central region of ZEN-4, including the neck linker. Genetic suppression data prove the functional significance of this interaction. An analogous complex, containing equimolar amounts of a CYK-4 ortholog and MKLP-1, was purified from mammalian cells. Biochemical studies indicate that this complex, named centralspindlin, is a heterotetramer. Centralspindlin, but not its individual components, strongly promotes microtubule bundling in vitro.  相似文献   

6.
Centralspindlin is a critical regulator of cytokinesis in animal cells. It is a tetramer consisting of ZEN-4/MKLP1, a kinesin-6 motor, and CYK-4/MgcRacGAP, a Rho GTPase-activating protein. At anaphase, centralspindlin localizes to a narrow region of antiparallel microtubule overlap and initiates central spindle assembly. Central spindle assembly requires complex formation between ZEN-4 and CYK-4. However, the structural consequences of CYK-4 binding to ZEN-4 are unclear as are the mechanisms of microtubule bundling. Here we investigate whether CYK-4 binding induces a conformational change in ZEN-4. Characterization of the structure and conformational dynamics of the minimal interacting regions between ZEN-4 and CYK-4 by continuous wave EPR and double electron-electron resonance (DEER) spectroscopy reveals that CYK-4 binding dramatically stabilizes the relative positions of the neck linker regions of ZEN-4. Additionally, our data indicate that each neck linker is similarly structured in the bound and unbound states. CYK-4 binding decreases the rate of ZEN-4-mediated microtubule gliding. These results constrain models for the molecular organization of centralspindlin.  相似文献   

7.
The chromosomal passenger complex (CPC) and centralspindlin are conserved cytokinesis regulators that localize to the spindle midzone, which forms between the separating chromosomes. Previous work placed the CPC and centralspindlin in a linear pathway that governs midzone formation. Using Caenorhabditis elegans embryos, we test whether there is a similar linear relationship between centralspindlin and the CPC in contractile ring constriction during cytokinesis. We show that simultaneous inhibition of the CPC kinase Aurora B(AIR-2) and the centralspindlin component MKLP1(ZEN-4) causes an additive constriction defect. Consistent with distinct roles for the proteins, inhibition of filamentous septin guanosine triphosphatases alleviates constriction defects in Aurora B(AIR-2)-inhibited embryos, whereas inhibition of Rac does so in MKLP1(ZEN-4)-inhibited embryos. Centralspindlin and the CPC are not required to enrich ring proteins at the cell equator but instead regulate formation of a compact mature ring. Therefore, in contrast to the linear midzone assembly pathway, centralspindlin and the CPC make independent contributions to control transformation of the sheet-like equatorial band into a ribbon-like contractile ring at the furrow tip.  相似文献   

8.
How the events of mitosis are coordinated is not well understood. Intriguing mitotic regulators include the chromosomal passenger proteins. Loss of either of the passengers inner centromere protein (INCENP) or the Aurora B kinase results in chromosome segregation defects and failures in cytokinesis. Furthermore, INCENP and Aurora B have identical localization patterns during mitosis and directly bind each other in vitro. These results led to the hypothesis that INCENP is a direct substrate of Aurora B. Here we show that the Caenorhabditis elegans Aurora B kinase AIR-2 specifically phosphorylated the C. elegans INCENP ICP-1 at two adjacent serines within the carboxyl terminus. Furthermore, the full length and a carboxyl-terminal fragment of ICP-1 stimulated AIR-2 kinase activity. This increase in AIR-2 activity required that AIR-2 phosphorylate ICP-1 because mutation of both serines in the AIR-2 phosphorylation site of ICP-1 abolished the potentiation of AIR-2 kinase activity by ICP-1. Thus, ICP-1 is directly phosphorylated by AIR-2 and functions in a positive feedback loop that regulates AIR-2 kinase activity. Since the Aurora B phosphorylation site within INCENP and the functions of INCENP and Aurora B have been conserved among eukaryotes, the feedback loop we have identified is also likely to be evolutionarily conserved.  相似文献   

9.
BimC kinesins are required for mitotic spindle assembly in a variety of organisms. These proteins are localized to centrosomes, spindle microtubules, and the spindle midzone. We have previously shown that the Caenorhabditis elegans Aurora B kinase AIR-2 is required for the localization of the ZEN-4 kinesin protein to midzone microtubules. To determine whether the association of BimC kinesins with spindle microtubules is also dependent on AIR-2, we examined the expression pattern of BMK-1, a C. elegans BimC kinesin, in wild-type and AIR-2-deficient embryos. BMK-1 is highly expressed in the hermaphrodite gonad and is localized to meiotic spindle microtubules in the newly fertilized embryo. In mitotic embryos, BMK-1 is associated with spindle microtubules from prophase through anaphase and is concentrated at the spindle midzone during anaphase and telophase. In the absence of AIR-2, BMK-1 localization to meiotic and mitotic spindles is greatly reduced. This is not a consequence of loss of ZEN-4 localization because BMK-1 is appropriately localized in ZEN-4-deficient embryos. Furthermore, AIR-2 and BMK-1 directly interact with one another and the C-terminal tail domain of BMK-1 is specifically phosphorylated by AIR-2 in vitro. Together with our previous data, these results suggest that at least one function of the Aurora B kinases is to recruit spindle-associated motor proteins to their sites of action.  相似文献   

10.
The Aurora B kinase complex is a critical regulator of chromosome segregation and cytokinesis. In Caenorhabditis elegans, AIR-2 (Aurora B) function requires ICP-1 (Incenp) and BIR-1 (Survivin). In various systems, Aurora B binds to orthologues of these proteins. Through genetic analysis, we have identified a new subunit of the Aurora B kinase complex, CSC-1. C. elegans embryos depleted of CSC-1, AIR-2, ICP-1, or BIR-1 have identical phenotypes. CSC-1, BIR-1, and ICP-1 are interdependent for their localization, and all are required for AIR-2 localization. In vitro, CSC-1 binds directly to BIR-1. The CSC-1/BIR-1 complex, but not the individual subunits, associates with ICP-1. CSC-1 associates with ICP-1, BIR-1, and AIR-2 in vivo. ICP-1 dramatically stimulates AIR-2 kinase activity. This activity is not stimulated by CSC-1/BIR-1, suggesting that these two subunits function as targeting subunits for AIR-2 kinase.  相似文献   

11.
The centralspindlin complex is required for the assembly and maintenance of the central spindle during late anaphase and the completion of cytokinesis. It is composed of two copies each of the kinesin-like protein ZEN-4, a Caenorhabditis elegans MKLP-1 (Kinesin-6 family), and the RhoGAP CYK-4. By using cryo-electron microscopy and helical 3D reconstruction, we are investigating the structural features of the interactions between monomeric and dimeric motor domain constructs of ZEN-4 and microtubules. We have calculated helically averaged 3D maps of microtubules decorated with ZEN-4 motor domain in the presence of AMP-PNP, ADP, ADP-AlF(4)(-), and nucleotide-free conditions. We used statistical difference mapping to compare these maps among each other and to related maps obtained from microtubules decorated with a well-characterized Kinesin-1 motor domain from Neurospora crassa. Thereby, we found distinct structural features in microtubule-ZEN-4 complexes that may directly relate to the functional properties of ZEN-4 and centralspindlin. Furthermore, we investigated the location, structure, and function of a highly conserved extension of approximately 50 residues unique to the Kinesin-6 subfamily, located in the motor core loop6/beta4 region.  相似文献   

12.
The central spindle regulates the formation and positioning of the contractile ring and is essential for completion of cytokinesis [1]. Central spindle assembly begins in early anaphase with the bundling of overlapping, antiparallel, nonkinetochore microtubules [2, 3], and these bundles become compacted and mature into the midbody. Prominent components of the central spindle include aurora B kinase and centralspindlin, a complex containing a Kinesin-6 protein (ZEN-4/MKLP1) and a Rho family GAP (CYK-4/MgcRacGAP) that is essential for central spindle assembly [4]. Centralspindlin localization depends on aurora B kinase [5]. Aurora B concentrates in the midbody and persists between daughter cells. Here, we show that in C. elegans embryos and in cultured human cells, respectively, ZEN-4 and MKLP1 are phosphorylated by aurora B in vitro and in vivo on conserved C-terminal serine residues. In C. elegans embryos, a nonphosphorylatable mutant of ZEN-4 localizes properly but does not efficiently support completion of cytokinesis. In mammalian cells, an inhibitor of aurora kinase acutely attenuates phosphorylation of MKLP1. Inhibition of aurora B in late anaphase causes cytokinesis defects without disrupting the central spindle. These data indicate a conserved role for aurora-B-mediated phosphorylation of ZEN-4/MKLP1 in the completion of cytokinesis.  相似文献   

13.
The GTPase RhoA is a central regulator of cellular contractility in a wide variety of biological processes. During these events, RhoA is activated by guanine nucleotide exchange factors (GEFs). These molecules are highly regulated to ensure that RhoA activation occurs at the proper time and place. During cytokinesis, RhoA is activated by the RhoGEF ECT-2. In human cells, ECT-2 activity requires its association with CYK-4, which is a component of the centralspindlin complex. In contrast, in early Caenorhabditis elegans embryos, not all ECT-2–dependent functions require CYK-4. In this study, we identify a novel protein, NOP-1, that functions in parallel with CYK-4 to promote RhoA activation. We use mutations in nop-1 and cyk-4 to dissect cytokinesis and cell polarization. NOP-1 makes a significant, albeit largely redundant, contribution to cytokinesis. In contrast, NOP-1 is required for the preponderance of RhoA activation during the establishment phase of polarization.  相似文献   

14.
BACKGROUND: The Aurora kinases control multiple aspects of mitosis, among them centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. Aurora activity is regulated in part by a subset of Aurora substrates that, once phosphorylated, can enhance Aurora kinase activity. Aurora A substrate activators include TPX2 and Ajuba, whereas the only known Aurora B substrate activator is the chromosomal passenger INCENP. RESULTS: We report that the C. elegans Tousled kinase TLK-1 is a second substrate activator of the Aurora B kinase AIR-2. Tousled kinase (Tlk) expression and activity have been linked to ongoing DNA replication, and Tlk can phosphorylate the chromatin assembly factor Asf. Here, we show that TLK-1 is phosphorylated by AIR-2 during prophase/prometaphase and that phosphorylation increases TLK-1 kinase activity in vitro. Phosphorylated TLK-1 increases AIR-2 kinase activity in a manner that is independent of TLK-1 kinase activity but depends on the presence of ICP-1/INCENP. In vivo, TLK-1 and AIR-2 cooperate to ensure proper mitotic chromosome segregation. CONCLUSIONS: The C. elegans Tousled kinase TLK-1 is a substrate and activator of the Aurora B kinase AIR-2. These results suggest that Tousled kinases have a previously unrecognized role in mitosis and that Aurora B associates with discrete regulatory complexes that may impart distinct substrate specificities and functions to the Aurora B kinase.  相似文献   

15.
BACKGROUND: Mitotic chromosome segregation depends on bi-orientation and capture of sister kinetochores by microtubules emanating from opposite spindle poles and the near synchronous loss of sister chromatid cohesion. During meiosis I, in contrast, sister kinetochores orient to the same pole, and homologous kinetochores are captured by microtubules emanating from opposite spindle poles. Additionally, mechanisms exist that prevent complete loss of cohesion during meiosis I. These features ensure that homologs separate during meiosis I and sister chromatids remain together until meiosis II. The mechanisms responsible for orienting kinetochores in mitosis and for causing asynchronous loss of cohesion during meiosis are not well understood. RESULTS: During mitosis in C. elegans, aurora B kinase, AIR-2, is not required for sister chromatid separation, but it is required for chromosome segregation. Condensin recruitment during metaphase requires AIR-2; however, condensin functions during prometaphase, independent of AIR-2. During metaphase, AIR-2 promotes chromosome congression to the metaphase plate, perhaps by inhibiting attachment of chromatids to both spindle poles. During meiosis in AIR-2-depleted oocytes, congression of bivalents appears normal, but segregation fails. Localization of AIR-2 on meiotic bivalents suggests this kinase promotes separation of homologs by promoting the loss of cohesion distal to the single chiasma. Inactivation of the phosphatase that antagonizes AIR-2 causes premature separation of chromatids during meiosis I, in a separase-dependent reaction. CONCLUSIONS: Aurora B functions to resolve chiasmata during meiosis I and to regulate kinetochore function during mitosis. Condensin mediates chromosome condensation during prophase, and condensin-independent pathways contribute to chromosome condensation during metaphase.  相似文献   

16.
Members of the MKLP1 subfamily of kinesin motor proteins localize to the equatorial region of the spindle midzone and are capable of bundling antiparallel microtubules in vitro. Despite these intriguing characteristics, it is unclear what role these kinesins play in dividing cells, particularly within the context of a developing embryo. Here, we report the identification of a null allele of zen-4, an MKLP1 homologue in the nematode Caenorhabditis elegans, and demonstrate that ZEN-4 is essential for cytokinesis. Embryos deprived of ZEN-4 form multinucleate single-celled embryos as they continue to cycle through mitosis but fail to complete cell division. Initiation of the cytokinetic furrow occurs at the normal time and place, but furrow propagation halts prematurely. Time-lapse recordings and microtubule staining reveal that the cytokinesis defect is preceded by the dissociation of the midzone microtubules. We show that ZEN-4 protein localizes to the spindle midzone during anaphase and persists at the midbody region throughout cytokinesis. We propose that ZEN-4 directly cross-links the midzone microtubules and suggest that these microtubules are required for the completion of cytokinesis.  相似文献   

17.
Many kinases are required for progression through the eukaryotic cell cycle. The Aurora kinases comprise a highly conserved family of serine/threonine kinases that have been implicated in chromosome segregation and cytokinesis in several organisms. We have isolated a sterile Caenorhabditis elegans mutant in which the majority of the locus encoding the Aurora A kinase air-1 has been deleted. Complementation tests with previously isolated sterile mutations in the air-1 genetic interval demonstrate that the air-1 and let-412 loci are identical. Previous analysis of AIR-1 function by RNA-mediated interference (RNAi) has shown that AIR-1 is required for embryonic survival. The characterization of the three sterile air-1 mutant alleles described here extends these studies by revealing an allelic series that differentially affects postembryonic cell divisions and germline development.  相似文献   

18.
The widely conserved kinase Aurora B regulates important events during cell division. Surprisingly, recent work has uncovered a few functions of Aurora-family kinases that do not require kinase activity. Thus, understanding this important class of cell cycle regulators will require strategies to distinguish kinase-dependent from independent functions. Here, we address this need in C. elegans by combining germline-specific, auxin-induced Aurora B (AIR-2) degradation with the transgenic expression of kinase-inactive AIR-2. Through this approach, we find that kinase activity is essential for AIR-2’s major meiotic functions and also for mitotic chromosome segregation. Moreover, our analysis revealed insight into the assembly of the ring complex (RC), a structure that is essential for chromosome congression in C. elegans oocytes. AIR-2 localizes to chromosomes and recruits other components to form the RC. However, we found that while kinase-dead AIR-2 could load onto chromosomes, other components were not recruited. This failure in RC assembly appeared to be due to a loss of RC SUMOylation, suggesting that there is crosstalk between SUMOylation and phosphorylation in building the RC and implicating AIR-2 in regulating the SUMO pathway in oocytes. Similar conditional depletion approaches may reveal new insights into other cell cycle regulators.  相似文献   

19.
An emerging family of kinases related to the Drosophila Aurora and budding yeast Ipl1 proteins has been implicated in chromosome segregation and mitotic spindle formation in a number of organisms. Unlike other Aurora/Ipl1-related kinases, the Caenorhabditis elegans orthologue, AIR-2, is associated with meiotic and mitotic chromosomes. AIR-2 is initially localized to the chromosomes of the most mature prophase I–arrested oocyte residing next to the spermatheca. This localization is dependent on the presence of sperm in the spermatheca. After fertilization, AIR-2 remains associated with chromosomes during each meiotic division. However, during both meiotic anaphases, AIR-2 is present between the separating chromosomes. AIR-2 also remains associated with both extruded polar bodies. In the embryo, AIR-2 is found on metaphase chromosomes, moves to midbody microtubules at anaphase, and then persists at the cytokinesis remnant. Disruption of AIR-2 expression by RNA- mediated interference produces entire broods of one-cell embryos that have executed multiple cell cycles in the complete absence of cytokinesis. The embryos accumulate large amounts of DNA and microtubule asters. Polar bodies are not extruded, but remain in the embryo where they continue to replicate. The cytokinesis defect appears to be late in the cell cycle because transient cleavage furrows initiate at the proper location, but regress before the division is complete. Additionally, staining with a marker of midbody microtubules revealed that at least some of the components of the midbody are not well localized in the absence of AIR-2 activity. Our results suggest that during each meiotic and mitotic division, AIR-2 may coordinate the congression of metaphase chromosomes with the subsequent events of polar body extrusion and cytokinesis.  相似文献   

20.
BACKGROUND: F-actin is enriched at the cortex of embryonic cells in the nematode Caenorhabditis elegans and is required for multiple processes that include the establishment of an anterior-posterior (A-P) axis and cytokinesis. However, the mechanisms that regulate cortical microfilament (MF) assembly remain poorly understood. RESULTS: We show here that a profilin called PFN-1 accumulates at the cortex independent of the actin cytoskeleton and is required for the assembly or maintenance of cortical MFs and myosin. Reducing PFN-1 levels by RNAi results in cytokinesis and A-P polarity defects. PFN-1 binds to the Formin Homology (FH) protein CYK-1, which also is required for cortical MFs. In contrast to PFN-1 and CYK-1, the Arp2/3 complex appears to be dispensable for the assembly of cortical MFs, for A-P polarity, and for cytokinesis. Instead, the Arp2/3 complex is required for cell migrations that occur during gastrulation and may also be involved in cellular rearrangements required for epidermal enclosure prior to elongation of ovoid embryos into vermiform larvae. CONCLUSIONS: We conclude that the FH protein CYK-1 and the profilin PFN-1 mediate the Arp2/3-independent assembly of MFs and are required for cytokinesis in the early embryo. These data suggest that CYK-1 and PFN-1 may nucleate MFs, as has recently been shown for an FH protein and a profilin in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号