首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeast phosphofructokinase contains 83 +/- 2 cysteinyl residues/enzyme oligomer. On the basis of their reactivity toward 5,5-dithiobis(2-nitrobenzoic acid), the accessible cysteinyl residues of the native enzyme may be classified into three groups. For titrations performed with N-ethylmaleimide, subdivisional classes of reactivity are evidenced. In each case, the 6 to 8 most reactive cysteines are not protected by fructose 6-phosphate from chemical labeling and do not seem involved in subsequent enzyme inactivation. Differential labeling studies as well as direct protection experiments in the presence of fructose 6-phosphate, indicate that 12 -SH groups/enzyme oligomer (i.e. three -SH groups per binding site) are protected by the allosteric substrate from the chemical modification. Specific labeling by the differential method of the cysteinyl residues protected by fructose 6-phosphate and further separation of the two types of subunits constituting yeast phosphofructokinase, show that the substrate binding sites are localized exclusively on subunits of beta type. Thus, alpha subunits are not implicated directly in the catalytic mechanism of yeast phosphofructokinase reaction.  相似文献   

2.
3.
Earlier studies have shown that native phenylalanyl-tRNA synthetase from baker's yeast contains two different kinds of subunits, alpha of molecular weight 73000 and beta of molecular weight 63000. The enzyme is an asymmetric tetramer alpha-2beta-2, which binds two moles of each ligand per mole. Incubation of the purified enzyme with trypsin results in an irreversible conversion: the alpha-subunit remains apparently unchanged but beta is rapidly degraded and yields a lighter species beta of molecular weight 41000. The trypsin-modified enzyme is an alpha-2beta-2 molecule which can still activate phenylalanine but cannot transfer it to tRNA-Phe; furthermore it does not bind tRNA-Phe but its kinetic parameters are identical to those of the native enzyme with respect to ATP and phenylalanine. Therefore the two beta subunits play a critical part in tRNA binding. Isolated alpha or beta subunits exhibit no significant activity and both types of subunit seem to be required for phenylalanine activation.  相似文献   

4.
Pyrophosphate-dependent phosphofructokinase (PPi-PFK) has been detected in several types of plant cells, but the gene has not been reported in sugar cane. Using Citrus paradisi PPi-PFK gene (AF095520 and AF095521) sequences to search the sugar cane EST database, we have identified both the alpha and beta subunits of this enzyme. The deduced amino acid sequences showed 76 and 80% similarity with the corresponding alpha and beta subunits of C. paradisi. A high degree of similarity was also observed among the PFK b subunits when the alignment of the sugar cane sequences was compared to those of Ricinus communis and Solanum tuberosum. It appears that alpha and beta are two distinct subunits; they were found at different concentrations in several sugar cane tissues. It remains to be determined if the different gene expression levels have some physiological importance and how they affect sucrose synthesis, export, and storage in vacuoles. A comparison between the amino acid sequences of b PFKs from a variety of organisms allowed us to identify the two critical Asp residues typical of this enzyme's activity site and the other binding sites; these residues are tightly conserved in all members of this protein family. Apparently, there are catalytic residues on the b subunit of the pyrophosphate-dependent enzyme.  相似文献   

5.
A new approach to studying the arrangement of subunits in the multienzyme complex tryptophan synthase is reported. Comparative studies of limited tryptic proteolysis of the alpha2beta2 complex and of the separate beta2 and alpha subunits show that subunit association inhibits two types of proteolysis which occur with the separate subunits: (i) cleavage of the beta2 subunit to two fragments with consequent loss of activity and (ii) complete degradation of the alpha subunit with loss of activity. Trypsin treatment of the alpha2beta complex does, however, result in at least one cleavage of the alpha subunit and yields an active alpha'2beta2 complex. The alpha'2beta2 complex can be resolved into an active beta2 subunit and an active alpha derivative termed alpha'. These two species can reassociate into the active alpha'2beta2 complex. alpha' derivative can be separated into a large fragment of Mr approximately 20,000 to 23,000 and a small peptide by polyacrylamide gel electrophoresis under denaturing conditions.  相似文献   

6.
N(alpha)-acetylation, catalyzed co-translationally with N(alpha)-acetyltransferase (NAT), is the most common modifications of eukaryotic proteins. In yeast, there are at least three NATs: NAT1, MAK3, and NAT3. The 20 S proteasome subunits were purified from the normal strain and each of the deletion mutants, nat1, mak3, and nat3. The electrophoretic mobility of these subunits was compared by two-dimensional gel electrophoresis. Shifts toward the alkaline side of the gel and unblocking of the N terminus of certain of the subunits in one or another of the mutants indicated that the alpha1, alpha2, alpha3, alpha4, alpha7, and beta3 subunits were acetylated with NAT1, the alpha5 and alpha6 subunits were acetylated with MAK3, and the beta4 subunit was acetylated with NAT3. Furthermore, the Ac-Met-Phe-Leu and Ac-Met-Phe-Arg termini of the alpha5 and alpha6 subunits, respectively, extended the known types of MAK3 substrates. Thus, nine subunits were N (alpha)-acetylated, whereas the remaining five were processed, resulting in the loss of the N-terminal region. The 20 S proteasomes derived from either the nat1 mutant or the normal strain were similar in respect to chymotrypsin-like, trypsin-like, and peptidylglutamyl peptide hydrolyzing activities in vitro, suggesting that N(alpha)-acetylation does not play a major functional role in these activities. However, the chymotrypsin-like activity in the absence of sodium dodecyl sulfate was slightly higher in the nat1 mutant than in the normal strain.  相似文献   

7.
We have compared the tryptic peptide fingerprints of the A alpha, A beta, E alpha, and E beta subunits encoded by four wild-derived H-2 complexes expressing A molecules closely related to Ak. The A molecules encoded by these Ak-related mice have A alpha and A beta subunits that differ from A alpha k and A beta k by less than 10% of their tryptic peptides. Comparisons among the four wild-derived A molecules suggested that these contemporary A alpha and A beta alleles arose by sequential mutational events from common ancestor A alpha and A beta alleles. These results suggest that A alpha and A beta may co-evolve as an A beta A alpha gene duplex in wild mice. Tryptic peptide fingerprint comparisons of the E beta gene linked to these Ak-related A beta A alpha gene duplexes indicate that two encode E beta d-like subunits, whereas another encodes an E beta s-like subunit. These results strongly suggest that the A beta A alpha duplex and E beta recombine in wild mouse populations. The significantly different evolutionary patterns exhibited by the class II genes encoding A vs E molecules are discussed.  相似文献   

8.
The E1 alpha and E1 beta subunits of the pyruvate dehydrogenase complex from the yeast Saccharomyces cerevisiae were purified. Antibodies raised against these subunits were used to clone the corresponding genes from a genomic yeast DNA library in the expression vector lambda gt11. The gene encoding the E1 alpha subunit was unique and localized on a 1.7-kb HindIII fragment from chromosome V. The identify of the gene was confirmed in two ways. (a) Expression of the gene in Escherichia coli produced a protein that reacted with the anti-E1 alpha serum. (b) Gene replacement at the 1.7-kb HindIII fragment abolished both pyruvate dehydrogenase activity and the production of proteins reacting with anti-E1 alpha serum in haploid cells. In addition, the 1.7-kb HindIII fragment hybridized to a set of oligonucleotides derived from amino acid sequences from the N-terminal and central regions of the human E1 alpha peptide. We propose to call the gene encoding the E1 alpha subunit of the yeast pyruvate dehydrogenase complex PDA1. Screening of the lambda gt11 library using the anti-E1 beta serum resulted in the reisolation of the RAP1 gene, which was located on chromosome XIV.  相似文献   

9.
The F(1) component of mitochondrial ATP synthase is an oligomeric assembly of five different subunits, alpha, beta, gamma, delta, and epsilon. In terms of mass, the bulk of the structure ( approximately 90%) is provided by the alpha and beta subunits, which form an (alphabeta)(3) hexamer with adenine nucleotide binding sites at the alpha/beta interfaces. We report here ultrastructural and immunocytochemical analyses of yeast mutants that are unable to form the alpha(3)beta(3) oligomer, either because the alpha or the beta subunit is missing or because the cells are deficient for proteins that mediate F assembly (e.g. Atp11p, Atp12p, or Fmc1p). The F(1) alpha(1) and beta subunits of such mutant strains are detected within large electron-dense particles in the mitochondrial matrix. The composition of the aggregated species is principally full-length F(1) alpha and/or beta subunit protein that has been processed to remove the amino-terminal targeting peptide. To our knowledge this is the first demonstration of mitochondrial inclusion bodies that are formed largely of one particular protein species. We also show that yeast mutants lacking the alpha(3)beta(3) oligomer are devoid of mitochondrial cristae and are severely deficient for respiratory complexes III and IV. These observations are in accord with other studies in the literature that have pointed to a central role for the ATP synthase in biogenesis of the mitochondrial inner membrane.  相似文献   

10.
We cloned and analyzed two genes, cap-1 and cap-2, which encode the alpha and beta subunits of Caenorhabditis elegans capping protein (CP). The nematode CP subunits are 55% (cap-1) and 66% (cap-2) identical to the chicken CP subunits and 32% (cap-1) and 48% (cap-2) identical to the yeast CP subunits. Purified nematode CP made by expression of both subunits in yeast is functionally similar to chicken skeletal muscle CP in two different actin polymerization assays. The abnormal cell morphology and disorganized actin cytoskeleton of yeast CP null mutants are restored to wild-type by expression of the nematode CP subunits. Expression of the nematode CP alpha or beta subunit is sufficient to restore viability to yeast cap1 sac6 or cap2 sac6 double mutants, respectively. Therefore, despite evolution of the nematode actin cytoskeleton to a state far more complex than that of yeast, one important component can function in both organisms.  相似文献   

11.
G Yellen  J C Migeon 《Gene》1990,86(2):145-152
We have produced the four subunits of the nicotinic acetylcholine receptor of Torpedo californica, an integral membrane protein, in the yeast Saccharomyces cerevisiae. Two of the subunits (alpha and delta) were readily produced from their cDNAs after simply subcloning them into a yeast shuttle vector adjacent to a yeast promoter. The other two protein subunits (beta and gamma) were not produced by this strategy, although the amounts of mRNA produced from these expression constructs are similar to those for alpha and delta. Replacing the DNA coding for the normal N-terminal signal sequences for the beta and gamma subunits with DNA coding for the signal sequence of yeast invertase results in successful protein synthesis. The yeast signal sequence allows these subunits to be translocated across the membrane of the endoplasmic reticulum and to be glycosylated. The appropriate final size of the subunit proteins suggests that the yeast signal sequence has been properly cleaved after translocation.  相似文献   

12.
Biochemical and crystallographic data suggest that, in contrast with other organisms, the active maize protein kinase CK2 might be composed simply of a catalytic polypeptide (CK2alpha), thus lacking CK2beta regulatory subunits. To investigate the existence and functionality of CK2beta regulatory subunits in Zea mays, we have screened a maize cDNA library using different approaches and have isolated three full-length cDNAs encoding CK2beta regulatory subunits (CK2beta-1, CK2beta-2 and CK2beta-3) and a cDNA coding for a novel CK2alpha catalytic subunit, CK2alpha-3. The pattern of expression of all these alpha/beta subunits has been studied in different organs and developmental stages using specific probes for each isoform, and indicates that while CK2alpha subunits are constitutive, CK2beta subunits are expressed differentially during embryo development. The yeast two-hybrid system and pull-down assays have been used to study specific interactions between the different subunits. While CK2alpha subunits are unable to self-associate, preferential interactions between alpha/beta isoforms and beta/beta isoforms can be predicted. Furthermore, we show that maize CK2alpha/beta subunits assemble into a structural tetrameric complex which has very similar properties to those described in other organisms, and that expression of maize CK2beta subunits in yeast allows the rescue of the phenotypic defects associated to the lack of CK2 function, thus demonstrating the functionality of maize CK2beta regulatory subunits.  相似文献   

13.
Characterization of the bilin attachment sites in R-phycoerythrin   总被引:9,自引:0,他引:9  
The amino acid sequence around the sites of attachment of all the bilin prosthetic groups of Gastroclonium coulteri R-phycoerythrin, (alpha beta)6 gamma, have been determined. The sequences of tryptic peptides derived from the alpha and beta subunits are (Formula: see text) where the designations alpha and beta refer to the subunits from which the peptides derived. Cysteinyl residues involved in bilin attachment are indicated with an asterisk. Each peptide carries a single bilin, either phycoerythrobilin (PEB) or phycourobilin (PUB). Spectroscopic studies on the gamma subunit indicate the presence of one PEB and three PUB groups. However, five unique tryptic peptides, gamma-A through gamma-E, were characterized, indicating that Gastroclonium R-phycoerythrin is a mixture of at least two species, (alpha beta)6 gamma and (alpha beta)6 gamma', with gamma subunits differing in amino acid sequence. The sequences of the gamma subunit bilin peptides (see below) were not homologous to those from alpha and beta subunits of any biliprotein. (Formula: see text) The bilins in all these peptides are attached through single linkages to a cysteinyl residue, except for the phycourobilin on peptide beta-3 which is attached through two thioether linkages to cysteinyl residues 10 amino acids apart. The availability of small bilin peptides was exploited to obtain more accurate molar extinction coefficients for peptide-linked PEB and PUB groups. Application of these extinction coefficients in the calculation of the bilin content of R-, B-, and C-phycoerythrins shows that there are 5 bilins/alpha beta in each of these three biliprotein types.  相似文献   

14.
Two isozymes of the Na,K-ATPase have distinct antigenic determinants   总被引:11,自引:0,他引:11  
Two isozymes of the Na,K-ATPase were purified from rat renal medulla and rat brainstem axolemma, and antisera were raised in rabbits. When antibody titers were measured, two sera showed specificity for either the kidney or axolemma Na,K-ATPases and had limited cross-reactivity which could be removed by cross-adsorption. In blots of polyacrylamide gels, these sera reacted with only the alpha or alpha (+) Na,K-ATPase catalytic subunits, while they cross-reacted with both types of beta subunits. Two other sera each recognized both alpha and alpha (+), indicating that the catalytic subunit isozymes have additional shared antigenic determinants. A comparison of the Na,K-ATPases from the brains of different vertebrate species indicates that birds and fish differ from mammals and amphibians in the manifestation of Na,K-ATPases isozymes. Neither neuraminidase nor endoglycosidase F treatment eliminated specific antibody reaction or affected the electrophoretic mobilities of the alpha and alpha (+) subunits, although endoglycosidase F increased the mobilities of the two types of beta subunits to similar final apparent molecular weights. Blots of the peptide fragments produced by incomplete papain and trypsin digests of the alpha and alpha (+) subunits were stained with the specific sera, and the patterns of immunoreactive fragments were found to be markedly different. The results suggest that the antigenic differences reside in differences in the primary protein sequences of the two isozymes.  相似文献   

15.
G protein-coupled receptors (GPCRs) are involved in the response of eukaryotic cells to a wide variety of stimuli, traditionally mediating their effects through heterotrimeric G proteins comprised of G alpha, G beta and G gamma subunits. The fission yeast Schizosaccharomyces pombe is an established tool for GPCR research, possessing two G alpha-dependent signalling cascades. A complete G alpha beta gamma complex has been characterised for the glucose-sensing pathway, but only the G alpha subunit, Gpa1p, has been identified in the pheromone-response pathway. Here, we report the use of the yeast two-hybrid system to identify a novel protein, Gnr1p, which interacts with Gpa1p. Gnr1p is predicted to contain seven WD repeats and to adopt a structure similar to typical G beta subunits. Disruption and overexpression studies reveal that Gnr1p negatively regulates the pheromone-response pathway but is not required for signalling. Human G beta subunits complement the loss of Gnr1p, functioning as negative regulators of G alpha signalling in fission yeast.  相似文献   

16.
Pyruvate dehydrogenase kinase was purified about 2,700-fold to apparent homogeneity from extracts of bovine kidney mitochondria. The kinase consists of two subunits (alpha beta) with molecular weights of 48,000 (alpha) and 45,000 (beta) as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Kinase activity resides in the alpha subunit. The alpha subunit is sensitive to proteolysis by chymotrypsin, whereas the beta subunit is selectively modified by trypsin. These observations, together with the results of peptide mapping, indicate that the two subunits are distinctly different proteins. It is proposed that the beta subunit is a regulatory subunit.  相似文献   

17.
Casein kinase type II were isolated by the same procedure, from rat liver, human placenta, Querin carcinoma and yeast, and characterized. The mammalian enzymes were composed of three subunits alpha, alpha' and beta, whereas yeast kinase was composed of two subunits alpha and alpha'. It was shown that the catalytic activity, substrate and phosphate donor specificity, sensitivity to heparin and spermine were the same for all the kinases tested. The results give additional support to the suggestion [1] that the beta subunit is not required for optimal activity and specificity of yeast casein kinase II. The quaternary structure of the yeast enzyme of a molecular weight of approximately 150 000 is proposed as alpha2 alpha'2.  相似文献   

18.
《The Journal of cell biology》1994,124(6):1039-1046
We have investigated the expression of integrins by rat oligodendroglia grown in primary culture and the functional role of these proteins in myelinogenesis. Immunochemical analysis, using antibodies to a number of alpha and beta integrin subunits, revealed that oligodendrocytes express only one detectable integrin receptor complex (alpha OL beta OL). This complex is immunoprecipitated by a polyclonal anti-human beta 1 integrin subunit antibody. In contrast, astrocytes, the other major glial cell type in brain, express multiple integrins including alpha 1 beta 1, alpha 3 beta 1, and alpha 5 beta 1 complexes that are immunologically and electrophoretically indistinguishable from integrins expressed by rat fibroblasts. The beta subunit of the oligodendrocyte integrin (beta OL) and rat fibroblast beta 1 have different electrophoretic mobilities in SDS-PAGE. However, the two beta subunits appear to be highly related based on immunological cross- reactivity and one-dimensional peptide mapping. After removal of N- linked carbohydrate chains, beta OL and beta 1 comigrated in SDS-PAGE and peptide maps of the two deglycosylated subunits were identical, suggesting differential glycosylation of beta 1 and beta OL accounts entirely for their size differences. The oligodendrocyte alpha subunit, alpha OL, was not immunoprecipitated by antibodies against well characterized alpha chains which are known to associate with beta 1 (alpha 3, alpha 4, and alpha 5). However, an antibody to alpha 8, a more recently identified integrin subunit, did precipitate two integrin subunits with electrophoretic mobilities in SDS-PAGE identical to alpha OL and beta OL. Functional studies indicated that disruption of oligodendrocyte adhesion to a glial-derived matrix by an RGD-containing synthetic peptide resulted in a substantial decrease in the level of mRNAs for several myelin components including myelin basic protein (MBP), proteolipid protein (PLP), and cyclic nucleotide phosphodiesterase (CNP). These results suggest that integrin-mediated adhesion of oligodendrocytes may trigger signal(s) that induce the expression of myelin genes and thus influence oligodendrocyte differentiation.  相似文献   

19.
The alpha- and beta-subunits of membrane-bound ATP synthase complex bind ATP and ADP: beta contributes to catalytic sites, and alpha may be involved in regulation of ATP synthase activity. The sequences of beta-subunits are highly conserved in Escherichia coli and bovine mitochondria. Also alpha and beta are weakly homologous to each other throughout most of their amino acid sequences, suggesting that they have common functions in catalysis. Related sequences in both alpha and beta and in other enzymes that bind ATP or ADP in catalysis, notably myosin, phosphofructokinase, and adenylate kinase, help to identify regions contributing to an adenine nucleotide binding fold in both ATP synthase subunits.  相似文献   

20.
The structural genes for the two major subunits of the mitochondrial ATPase were isolated among genomic clones from the yeast Schizosaccharomyces pombe by transformation and complementation of mutants unable to grow on glycerol and lacking either the alpha or the beta subunits. The plasmid pMa1 containing a 2.3-kilobase genomic insert transformed the mutant A23-13 lacking a detectable alpha subunit. The transformant grew on glycerol and contained an alpha subunit of normal electrophoretic mobility. The plasmid pMa2 containing a 5.4-kilobase genomic insert transformed the mutant B59-1 lacking the beta subunit. The transformant grew on glycerol and contained a beta subunit of normal mobility. The structural gene for the beta ATPase subunit for the fission yeast S. pombe was localized within the pMa2 insert by hybridization to a probe containing the beta ATPase gene from the budding yeast Saccharomyces cerevisiae (Saltzgaber, J., Kunapuli, S., and Douglas, M. G. (1983) J. Biol. Chem. 258, 11465-11470). The mRNAs which hybridized to pMa1 and pMa2 were translated by a reticulocyte lysate into polypeptides of Mr = 59,000 and 54,000, respectively. These genes products reacted with an anti-F1-ATPase serum and therefore correspond most probably to precursors of the alpha and beta subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号