首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L P Pan  M Frame  B Durham  D Davis  F Millett 《Biochemistry》1990,29(13):3231-3236
A new technique has been developed to measure intracomplex electron transfer between cytochrome c and its redox partners. Cytochrome c derivatives labeled at single lysine amino groups with ruthenium bisbipyridine dicarboxybipyridine were prepared as previously described [Pan, L.P., Durham, B., Wolinska, J., & Millett, F. (1988) Biochemistry 27, 7180-7184]. Excitation of RuII with a short light pulse resulted in the formation of the excited-state RuII*, which rapidly transferred an electron to the ferric heme group to form FeII and RuIII. Aniline was included in the buffer to reduce RuIII to RuII, leaving the heme group in the ferrous state. This process was complete within the lifetime of the light pulse. When plastocyanin was present in the solution, electron transfer from the ferrous heme of cytochrome c to CuII in plastocyanin was observed. All of the ruthenium cytochrome c derivatives formed electrostatic complexes with plastocyanin at low ionic strength, allowing intracomplex electron-transfer rate constants to be measured. The rate constants for derivatives modified at the indicated lysines were as follows: Lys 13, 1920 s-1; Lys 8, 1480 s-1; Lys 7, 1340 s-1; Lys 86, 1020 s-1; Lys 25, 820 s-1; Lys 72, 800 s-1; Lys 27, 530 s-1. It is interesting that the derivative modified at lysine 13 at the top of the heme crevice had the largest rate constant, while lysine 27 at the right side of the heme crevice had the smallest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
B Durham  L P Pan  J E Long  F Millett 《Biochemistry》1989,28(21):8659-8665
Cytochrome c derivatives labeled at specific lysine amino groups with ruthenium bis(bipyridine) dicarboxybipyridine [RuII(bpy)2(dcbpy)] were prepared by using the procedure described previously [Pan, L. P., Durham, B., Wolinska, J., & Millett, F. (1988) Biochemistry 27, 7180-7184]. Four additional singly labeled derivatives were purified, bringing the total number to 10. These derivatives have a strong luminescence emission centered at 662 nm arising from the excited state, RuII*. Transient absorption spectroscopy was used to directly measure the rate constants for the photoinduced electron-transfer reaction from RuII* to the ferric heme group (k1) and for the thermal back-reaction from the ferrous heme group to RuIII (k2). The rate constants were found to be k1 = 14 X 10(6) s-1 and k2 = 24 X 10(6) s-1 for the derivative modified at lysine 72, which has a distance of 8-16 A between the ruthenium and heme groups. Similar rate constants were found for the derivatives modified at lysines 13 and 27, which have distances of 6-12 A separating the ruthenium and heme groups. The rate constants were significantly slower for the derivatives modified at lysine 25 (k1 = 1 X 10(6) s-1, k2 = 1.5 X 10(6) s-1) and lysine 7 (k1 = 0.3 X 10(6) s-1, k2 = 0.5 X 10(6) s-1), which have distances of 9-16 A. Transients due to photoinduced electron transfer could not be detected for the remaining derivatives, which have larger distances between the ruthenium and heme groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A novel method for initiating intramolecular electron transfer in cytochrome c oxidase is reported. The method is based upon photoreduction of cytochrome c labeled with thiouredopyrene-3,6, 8-trisulfonate in complex with cytochrome oxidase. The thiouredopyrene-3,6,8-trisulfonate-labeled cytochrome c was prepared by incubating the thiol reactive form of the dye with yeast iso-1-cytochrome c, containing a single cysteine residue. Laser pulse excitation of a stoichiometrical complex between thiouredopyrene-3,6,8-trisulfonate-cytochrome c and bovine heart cytochrome oxidase at low ionic strength resulted in the reduction of cytochrome c by the excited form of thiouredopyrene-3,6, 8-trisulfonate and subsequent intramolecular electron transfer from the reduced cytochrome c to cytochrome oxidase. The maximum efficiency by a single laser pulse resulted in the reduction of approximately 17% of cytochrome a, and was achieved only at a 1 : 1 ratio of cytochrome c to cytochrome oxidase. At higher cytochrome c to cytochrome oxidase ratios the heme a reduction was strongly suppressed.  相似文献   

4.
Electron transfer from yeast ferrous cytochrome c to H2O2-oxidized yeast cytochrome c peroxidase has been studied using flash photoreduction methods. At low ionic strength (mu less than 10 mM), where a strong complex is formed between cytochrome c and peroxidase, electron transfer occurs rather slowly (k approximately 200s-1). However, at high ionic strength where the electrostatic complex is largely dissociated, the observed first-order rate constant for peroxidase reduction increases significantly reaching a concentration independent limit of k approximately 1500 s-1. Thus, at least in some cases, formation of an electrostatically-stabilized complex can actually impede electron transfer between proteins.  相似文献   

5.
A hypothetical three-dimensional model of the cytochrome c peroxidase . tuna cytochrome c complex is presented. The model is based on known x-ray structures and supported by chemical modification and kinetic data. Cytochrome c peroxidase contains a ring of aspartate residues with a spatial distribution on the molecular surface that is complementary to the distribution of highly conserved lysines surrounding the exposed edge of the cytochrome c heme crevice, namely lysines 13, 27, 72, 86, and 87. These lysines are known to play a functional role in the reaction with cytochrome c peroxidase, cytochrome oxidase, cytochrome c1, and cytochrome b5. A hypothetical model of the complex was constructed with the aid of a computer-graphics display system by visually optimizing hydrogen bonding interactions between complementary charged groups. The two hemes in the resulting model are parallel with an edge separation of 16.5 A. In addition, a system of inter- and intramolecular pi-pi and hydrogen bonding interactions forms a bridge between the hemes and suggests a mechanism of electron transfer.  相似文献   

6.
The kinetic properties of a 1:1 covalent complex between horse-heart cytochrome c and yeast cytochrome c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) have been investigated by transient-state and steady-state kinetic techniques. Evidence for heterogeneity in the complex is presented. About 50% of the complex reacts with hydrogen peroxide with a rate 20–40% faster than that of native enzyme; 20% of the complex exists in a conformation which does not react with hydrogen peroxide but converts to the reactive form at a rate of 20 ± 5 s−1; 30% of the complex does not react with hydrogen peroxide to form the oxidized enzyme intermediate, cytochrome c peroxidase Compound I. Intramolecular electron transfer between covalently bound ferrocytochrome c and an oxidized site in cytochrome c peroxidase Compound I is too fast to measure, but a lower limit of 600 s−1 can be estimated at 5°C in a 10 mM potassium phosphate buffer at pH 7.5. Free ferrocytochrome c reduces cytochrome c peroxidase Compound I covalently bound to ferricytochrome c at a rate 10−4 to 10−5-times slower than for free Compound I. The transient-state ferrocytochrome c reduction rates of Compound I covalently linked to ferricytochrome c are about 70-times too slow to account for the steady-state catalytic properties of the 1:! covalent complex. This indicates that hydrogen peroxide can interact with the 1:1 complex at sites other than the heme of cytochrome c peroxidase, generating additional species capable of oxidizing free ferrocytochrome c.  相似文献   

7.
The oxidation of ferric cytochrome c peroxidase by hydrogen peroxide yields a product, compound ES [Yonetani, T., Schleyer, H., Chance, B., & Ehrenberg, A. (1967) in Hemes and Hemoproteins (Chance, B., Estabrook, R. W., & Yonetani, T., Eds.) p 293, Academic Press, New York], containing an oxyferryl heme and a protein free radical [Dolphin, D., Forman, A., Borg, D. C., Fajer, J., & Felton, R. H. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 614-618]. The same oxidant takes the ferrous form of the enzyme to a stable Fe(IV) peroxidase [Ho, P. S., Hoffman, B. M., Kang, C. H., & Margoliash, E. (1983) J. Biol. Chem. 258, 4356-4363]. It is 1 equiv more highly oxidized than the ferric protein, contains the oxyferryl heme, but leaves the radical site unoxidized. Addition of sodium fluoride to Fe(IV) peroxidase gives a product with an optical spectrum similar to that of the fluoride complex of the ferric enzyme. However, reductive titration and electron paramagnetic resonance (EPR) data demonstrate that the oxidizing equivalent has not been lost but rather transferred to the radical site. The EPR spectrum for the radical species in the presence of Fe(III) heme is identical with that of compound ES, indicating that the unusual characteristics of the radical EPR signal do not result from coupling to the heme site. By stopped-flow measurements, the oxidizing equivalent transfer process between heme and radical site is first order, with a rate constant of 0.115 s-1 at room temperature, which is independent of either ligand or protein concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have used microcalorimetry and analytical ultracentrifugation to test the model proposed in Pettigrew et al. [(1999) J. Biol. Chem. 274, 11383-11389] for the binding of small cytochromes to the cytochrome c peroxidase of Paracoccus denitrificans. Both methods reveal complexity in behavior due to the presence of a monomer/dimer equilibrium in the peroxidase. In the presence of either Ca(2+), or higher ionic strength, this equilibrium is shifted to the dimer. Experiments to study complex formation with redox partners were performed in the presence of Ca(2+) in order to simplify the equilibria that had to be considered. The results of isothermal titration calorimetry reveal that the enzyme can bind two molecules of horse cytochrome c with K(d) values of 0.8 microM and 2.5 microM (at 25 degrees C, pH 6.0, I = 0.026) but only one molecule of Paracoccus cytochrome c-550 with a K(d) of 2.8 microM, molar binding ratios confirmed by ultracentrifugation. For both horse cytochrome c and Paracoccus cytochrome c-550, the binding is endothermic and driven by a large entropy change, a pattern consistent with the expulsion of water molecules from the interface. For horse cytochrome c, the binding is weakened 3-fold at I = 0.046 M due to a smaller entropy change, and this is associated with an increase in enzyme turnover. In contrast, neither the binding of cytochrome c-550 nor its oxidation rate is affected by raising the ionic strength in this range. We propose that, at low ionic strength, horse cytochrome c is trapped in a nonproductive orientation on a broad capture surface of the peroxidase.  相似文献   

9.
10.
Cytochrome c peroxidase and cytochrome c form a noncovalent electron transfer complex in the course of the peroxidase-catalyzed reduction of H2O2. The two hemoproteins were cross-linked in 40% yield to a covalent 1:1 complex with the aid of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The covalent complex was found to be a valid model of the noncovalent electron transfer complex for the following reasons. The covalent complex had only 5% residual peroxidase activity toward exogeneous ferrocytochrome c indicating that the cross-linked cytochrome c covers the electron-accepting site of cytochrome c peroxidase. The residual peroxidase activity was almost independent of ionic strength indicating that the electron-accepting site is much less accessible even when ionic bonds between the two cross-linked hemoproteins are severed. The rate of reduction of heme c by ascorbate is 15 times slower in the covalent complex than in free cytochrome c and is independent of ionic strength. Although the covalent complex may not have been entirely pure with respect to the number and location of the cross-links, two major cross-links could be localized to within a few residues. One is from Lys 13 of cytochrome c to an acidic residue in positions 32, 33, 34, 35, or 37 of cytochrome c peroxidase, the other from Lys 86 of cytochrome c to a carboxyl group in the same cluster of acidic residues. The result stresses the importance of a peculiar stretch of acidic residues of cytochrome c peroxidase and of Lys 13 and 86 of cytochrome c.  相似文献   

11.
Ren Y  Wang WH  Wang YH  Case M  Qian W  McLendon G  Huang ZX 《Biochemistry》2004,43(12):3527-3536
To characterize the cytochrome b(5) (Cyt b(5))-cytochrome c (Cyt c) interactions during electron transfer, variants of Cyt b(5) have been employed to assess the contributions of electrostatic interactions (substitution of surface charged residues Glu44, Glu48, Glu56, and Asp60 and heme propionate), hydrophobic interactions, and the thermodynamic driving forces (substitutions for hydrophobic residues in heme pocket residues Phe35, Pro40, Val45, Phe58, and Val61). The electrostatic interactions play an important role in maintaining the stability and specificity of the Cyt b(5)-Cyt c complex that is formed. There is no essential effect on the intraprotein complex electron transfer even if most of the involved negatively charged residues on the surface of Cyt b(5) have been removed. The results support a dynamic docking paradigm for Cyt b(5)-Cyt c interactions. The orientation that is optimal for binding may not be optimal form for electron transfer. Substitution of hydrophobic residues does not have a significant effect on the binding between Cyt b(5) and Cyt c; rather, it regulates the electron transfer rates via changes in the driving force. Combining the electron transfer studies of the Cyt b(5)-Cyt c system and the Cyt b(5)-Zn-Cyt c system, we obtain the reorganization energy (0.6 eV) at an ionic strength of 150 mM.  相似文献   

12.
JBIC Journal of Biological Inorganic Chemistry - The reactions of four cymene-capped ruthenium(II) compounds with pro-apoptotic protein, cytochrome c (Cyt), and anti-proliferative protein lysozyme...  相似文献   

13.
Sadoski RC  Engstrom G  Tian H  Zhang L  Yu CA  Yu L  Durham B  Millett F 《Biochemistry》2000,39(15):4231-4236
Electron transfer between the Rieske iron-sulfur protein (Fe(2)S(2)) and cytochrome c(1) was studied using the ruthenium dimer, Ru(2)D, to either photoreduce or photooxidize cytochrome c(1) within 1 micros. Ru(2)D has a charge of +4, which allows it to bind with high affinity to the cytochrome bc(1) complex. Flash photolysis of a solution containing beef cytochrome bc(1), Ru(2)D, and a sacrificial donor resulted in reduction of cytochrome c(1) within 1 micros, followed by electron transfer from cytochrome c(1) to Fe(2)S(2) with a rate constant of 90,000 s(-1). Flash photolysis of reduced beef bc(1), Ru(2)D, and a sacrificial acceptor resulted in oxidation of cytochrome c(1) within 1 micros, followed by electron transfer from Fe(2)S(2) to cytochrome c(1) with a rate constant of 16,000 s(-1). Oxidant-induced reduction of cytochrome b(H) was observed with a rate constant of 250 s(-1) in the presence of antimycin A. Electron transfer from Fe(2)S(2) to cytochrome c(1) within the Rhodobacter sphaeroides cyt bc(1) complex was found to have a rate constant of 60,000 s(-1) at 25 degrees C, while reduction of cytochrome b(H) occurred with a rate constant of 1000 s(-1). Double mutation of Ala-46 and Ala-48 in the neck region of the Rieske protein to prolines resulted in a decrease in the rate constants for both cyt c(1) and cyt b(H) reduction to 25 s(-1), indicating that a conformational change in the Rieske protein has become rate-limiting.  相似文献   

14.
We have prepared three different cytochrome c derivatives, each containing a single specifically trifluoroacetylated lysine at residues 13, 55, and 99, respectively. The only modification that affected cytochrome c oxidase (EC 1.9.3.1) activity was that of lysine-13 at the top of the heme crevice. Trifluoroacetylation of lysine-13 increased the apparent Michaelis constant fivefold compared to that of native cytochrome c, but did not affect the maximum velocity. Trifluoroacetylation of lysine-55 at the left side of the cytochrome c molecule did not affect cytochrome oxidase activity in any way, nor did trifluoroacetylation of lysine-99 at the rear of the cytochrome c molecule. This indicates that the cytochrome oxidase binding site on cytochrome c involved only the front of the cytochrome c molecule and those lysines immediately surrounding the heme crevice.  相似文献   

15.
T Sakurai 《Biochemistry》1992,31(40):9844-9847
Rate constants have been determined for the electron-transfer reactions between reduced horse heart cytochrome c and resting Rhus vernicifera laccase as a function of pH, ionic strength, and temperature. The second-order rate constant for the oxidation of reduced cytochrome c was determined to be k = 125 M-1 s-1 at 25 degrees C in 0.2 M phosphate buffer at pH 6.0 with the activation parameters delta H++ = 16.2 kJ mol-1 and delta S++ = 28.9 J mol-1 K-1. The rate constants increased with decreasing buffer concentration, indicating that electron transfer from cytochrome c to laccase is favored by the local electrostatic interaction (ZAZB = -0.9 at pH 6 and -1.3 at pH 4.8) between the basic proteins with positive net charges. From the increase of the rate of electron transfer with decreasing pH, one of the driving forces of the reaction was suggested to be the difference in the redox potentials between the type 1 copper in laccase and the central iron in cytochrome c. Further, on addition of one hexametaphosphate anion per cytochrome c molecule, the rate of the electron transfer was increased, probably because the association of both proteins became more favorable.  相似文献   

16.
Efficient biological electron transfer may require a fluid association of redox partners. Two noncrystallographic methods (a new molecular docking program and 1H NMR spectroscopy) have been used to study the electron transfer complex formed between the cytochrome c peroxidase (CCP) of Paracoccus denitrificans and cytochromes c. For the natural redox partner, cytochrome c550, the results are consistent with a complex in which the heme of a single cytochrome lies above the exposed electron-transferring heme of the peroxidase. In contrast, two molecules of the nonphysiological but kinetically competent horse cytochrome bind between the two hemes of the peroxidase. These dramatically different patterns are consistent with a redox active surface on the peroxidase that may accommodate more than one cytochrome and allow lateral mobility.  相似文献   

17.
Cytochrome c peroxidase forms an electron transfer complex with cytochrome c. The complex is governed by ionic bonds between side chain amino groups of cytochrome c and carboxyl groups of peroxidase. To localize the binding site for cytochrome c on the peroxidase, we have used the method of differential chemical modification. By this method the chemical reactivity of carboxyl groups (toward carbodiimide/aminoethane sulfonate) was compared in free and in complexed peroxidase. When ferricytochrome c was bound to cytochrome c peroxidase, acidic residues 33, 34, 35, 37, 221, 224, and 1 to 3 carboxyls at the C terminus became less reactive by a factor of approximately 4, relative to the remaining 39 carboxylates of peroxidase. Of the less reactive residues those in the 30-40 region and the 221/224 pair are on opposite sides of the surface area which contains the heme propionates. We, therefore, propose that the binding site for cytochrome c on cytochrome c peroxidase spans the area where one heme edge comes close to the molecular surface. The results are in very good agreement with chemical cross-linking studies (Waldmeyer, B., and Bosshard, H.R. (1985) J. Biol. Chem. 260, 5184-5190); they also support a hypothetical model predicted on the basis of the known crystal structures of cytochrome c and peroxidase (Poulos, T.L., and Kraut, J. (1980) J. Biol. Chem. 255, 10322-10330).  相似文献   

18.
Structural analysis of the bc(1) complex suggests that the extra membrane domain of iron-sulfur protein (ISP) undergoes substantial movement during the catalytic cycle. Binding of Qo site inhibitors to this complex affects the mobility of ISP. Taking advantage of the difference in the pH dependence of the redox midpoint potentials of cytochrome c(1) and ISP, we have measured electron transfer between the [2Fe-2S] cluster and heme c(1) in native and inhibitor-treated partially reduced cytochrome bc(1) complexes. The rate of the pH-induced cytochrome c(1) reduction can be estimated by conventional stopped-flow techniques (t1/2, 1-2 ms), whereas the rate of cytochrome c(1) oxidation is too high for stopped-flow measurement. These results suggest that oxidized ISP has a higher mobility than reduced ISP and that the movement of reduced ISP may require an energy input from another component. In the 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT)-inhibited complex, the rate of cytochrome c(1) reduction is greatly decreased to a t1/2 of approximately 2.8 s. An even lower rate is observed with the stigmatellin-treated complex. These results support the idea that UHDBT and stigmatellin arrest the [2Fe-2S] cluster at a fixed position, 31 A from heme c(1), making electron transfer very slow.  相似文献   

19.
Amino acid replacements of an aromatic residue, Trp-51, which is in contact with the heme of yeast cytochrome c peroxidase have a number of significant effects on the kinetics and coordination state of the enzyme. Six mutants at this site (W51F, W51M, W51T, W51C, W51A, and W51G) were examined. Optical and EPR spectra show that each of these mutations introduces a shift from the 5-coordinate to 6-coordinate form, and slightly increases the asymmetry of the heme ligand field. Conversion from a 6-coordinate high-spin form at pH 5 to a 6-coordinate low-spin form at pH 7 is observed for several of the variants (W51F, W51T, and W51A), while W51G and W51C appear as predominantly low-spin species between pH 5 and 7. Addition of 50% glycerol prevents the facile conversion to the low-spin conformation for W51F, W51T, and W51A, and only W51F can be stabilized in a 5-coordinate configuration by glycerol. For the oxidation of cytochrome c by H2O2, three of the variants (W51F, W51M, and W51T) exhibit values of kcat(app) that are greater than for the wild-type enzyme, while the other mutations give decreased rates of enzyme turnover. Unlike the wild-type enzyme, which functions more efficiently with cytochrome c from yeast than with the horse heart protein, the mutant W51F does not show a preference for substrate from its native organism. The three mutants which exhibit increased values of kcat(app) show a pH optimum at 6.8 compared with that of 5.25 for the wild-type enzyme when measured with horse heart cytochrome c. This shift in pH optimum is not observed with yeast cytochrome c. Construction of single and multiple mutations at Trp-51, Ile-53, and Gly-152 shows that these kinetic properties are not due to natural amino acid variations observed at these sites. Pre-steady-state kinetics show that the bimolecular rate constant for the fast phase of the reaction of the enzyme with H2O2 is only slightly decreased from 3.03 (0.09) X 10(7) to 2.2 (0.1) X 10(7) M-1 s-1 for W51F and to 1.5 (0.1) X 10(7) M-1 s-1 for W51A. The slow phase of the reaction (4.9 s-1) which contributes approximately 30% to the amplitude of the change for the wild-type enzyme is not observed for W51F or W51A.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
《BBA》2023,1864(2):148957
The electron transfer reactions within wild-type Rhodobacter sphaeroides cytochrome bc1 (cyt bc1) were studied using a binuclear ruthenium complex to rapidly photooxidize cyt c1. When cyt c1, the iron?sulfur center Fe2S2, and cyt bH were reduced before the reaction, photooxidation of cyt c1 led to electron transfer from Fe2S2 to cyt c1 with a rate constant of ka = 80,000 s?1, followed by bifurcated reduction of both Fe2S2 and cyt bL by QH2 in the Qo site with a rate constant of k2 = 3000 s?1. The resulting Q then traveled from the Qo site to the Qi site and oxidized one equivalent each of cyt bL and cyt bH with a rate constant of k3 = 340 s?1. The rate constant ka was decreased in a nonlinear fashion by a factor of 53 as the viscosity was increased to 13.7. A mechanism that is consistent with the effect of viscosity involves rotational diffusion of the iron?sulfur protein from the b state with reduced Fe2S2 close to cyt bL to one or more intermediate states, followed by rotation to the final c1 state with Fe2S2 close to cyt c1, and rapid electron transfer to cyt c1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号