首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plastidic pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) was purified to near homogeneity as judged by native PAGE with about 4% recovery from developing seeds of Brassica campestris using (NH4)2SO4 fractionation, DEAE-cellulose chromatography, gel filtration through Sepharose-CL-6B and affinity chromatography through reactive blue Sepharose-CL-6B. The purified enzyme having molecular mass of about 266 kDa was quite stable and showed a broad pH optimum between pH 6.8-7.8. Typical Michaelis-Menten kinetics was obtained for both the substrates with K(m) values of 0.13 and 0.14 mM for PEP and ADP, respectively. The enzyme could also utilize CDP, GDP or UDP as alternative nucleotide to ADP, but with lower Vmax and higher K(m). The enzyme had an absolute requirement for a divalent and a monovalent cation for activity and was inhibited by oxalate, fumarate, citrate, isocitrate and ATP, and activated by AMP, aspartate, 3-PGA, tryptophan and inorganic phosphate. ATP inhibited the enzyme competitively with respect to PEP and non-competitively with respect to ADP. Similarly, oxalate inhibition was also of competitive type with respect to PEP and non-competitive with respect to ADP. This inhibition by either ATP or oxalate was not due to chelation of Mg2+, as the inhibition was not relieved on increasing Mg2+ concentration even upto 30 mM. Initial velocity and product inhibition studies demonstrated the reaction mechanism to be compulsory ordered type. The enzyme seems to be regulated synergistically by ATP and citrate.  相似文献   

2.
Cytosolic pyruvate kinase (ATP: Pyruvate phosphotransferase, EC 2.7.1.40; PKc) was purified to apparent homogeneity with about 22% recovery from developing seeds of Brassica campestris using (NH4)2SO4 fractionation, DEAE-cellulose chromatography, gel filtration through Sepharose-CL-6B and affinity chromatography through reactive Blue Sepharose-CL-6B. The purified enzyme with molecular mass of about 214 kDa was a heterotetramer with subunit molecular mass of 55 and 57 kDa. The enzyme showed maximum activity at pH 6.8 and absolute requirement for a divalent (Mg2+) and a monovalent (K+) cation for activity. Typical Michaelis-Menten kinetics was obtained for both the substrates with Km values of 0.10 and 0.11 mM for PEP and ADP, respectively. The enzyme could also use UDP or GDP as alternative nucleotides, but with lower Vmax and lesser affinities. The enzyme was inhibited by glutamate, glutamine, fumarate, citrate, isocitrate, oxalate, 2-PGA, ATP, UTP and GTP and activated by glucose-6-phosphate, fructose-1,6-bisphosphate and Pi, suggesting its regulation mainly by TCA cycle intermediates and the cellular need for carbon skeletons for amino acid biosynthesis. ATP inhibition was of competitive type with respect to PEP and non-competitive with respect to ADP. Similarly, oxalate inhibition was also of competitive type with respect to PEP and non-competitive with respect to ADP. Initial velocity and product inhibition studies except for pyruvate inhibition were consistent for a compulsory-ordered tri-bi mechanism.  相似文献   

3.
Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) was purified to apparent homogeneity with about 29% recovery from developing seeds of Brassica using ammonium sulfate fractionation, DEAE-cellulose chromatography, and gel filtration through Sepharose CL-6S. The purified enzyme with mol wt of about 400 kD exhibited maximum activity at pH 8.0. The enzyme had an absolute requirement for a divalent cation which was satisfied by Mg2+. The enzyme showed typical hyperbolic kinetics with PEP and HCO?3 with Km of 0.125 and 0.104 mM, respectively. Glu-6-P could activate the enzyme, whereas other phosphate esters such as fru-1, 6-P2, L-glycerophosphate and 3-PGA did not have any effect on the enzyme activity. Noneof the amino acids at 5 mM concentration had any significant effect on the enzyme activity. Nucleotide monophosphates and diphosphates did not inhibit the enzyme significantly, whereas ATP inhibited the enzyme activity. Oxaloacetate and malate inhibited the enzyme non-competitively with respect to PEP with Ki values of 0.127 and 1.25 mM, respectively. The enzyme activity in vivo seems to be regulated ’Tlainly by availability of its substrate and activation by glu-6-P, both of which are supplied through glycolysis.  相似文献   

4.
Levels of phosphofructokinase and metabolites known to affect its activity were monitored at different stages of wheat grain development. Phosphofructokinase activity peaked at 28 days after anthesis, declining thereafter. The amount of citrate increased up to 14 days after anthesis. PEP, ATP, ADP and AMP showed peak values at 28 days after anthesis. Phosphofructokinase from 28-day-old grains was purified × 23 with 49% recovery by ammonium sulphate fractionation and chromatography on DEAE-Sephadex A-50. A normal hyperbolic curve was observed with F-6-P. ATP inhibited the enzyme above 0.75 mM. ADP, citrate and 2-P-glycolate inhibited the enzyme noncooperatively; Ki values being 2.2, 1.6 and 5.0 mM, respectively. PEP and AMP failed to inhibit the enzyme activity  相似文献   

5.
Pyruvate kinase from bovine adrenal cortex was purified to an electrophoretically homogeneous state. The molecular weight of the native enzyme is about 230 000, that of one subunit is 57 000. The maximal values of the pyruvate kinase initial reaction rate were obtained in 50 mM imidazole-acetate buffer within the pH range of 6.8 to 7.0. The curve of the initial pyruvate kinase reaction rate versus phosphoenolpyruvate (PEP) and ADP concentrations is hyperbolic and obeys the Michaelis-Menten kinetics with Km for PEP and ADP of 0.055 X 10(-3) M and 0.25 X 10(-3) M, respectively. The enzyme is activated by Mn2+ and Co2+ by 43 and 38%, respectively. IDP, GDP, and UDP may be used as analogs of ADP. The enzyme is not activated by fructose-1.6-diphosphate and is inhibited by L-phenylalanine and ATP.  相似文献   

6.
Pyruvate kinase of Rana ridibunda erythrocytes is one of the regulatory enzymes of glycolysis. PK was purified about 7800-fold. The purified enzyme showed on SDS-electrophoresis three protein bands with an apparent molecular weight of between 60 and 65 kD. The enzyme is subject to activation by FDP and to inhibition by ATP. It showed Km values for PEP and ADP of 0.095 and 0.98 mM respectively. It was activated by K+, Mg2+ and Ca2+ ions whereas it was inhibited by Na+ ions. The role of PK of Rana ridibunda erythrocytes, as a key and rate controlling enzyme of the glycolytic flux is discussed.  相似文献   

7.
3-Phosphoglycerate kinase (3-PGK) has been purified to apparent homogeneity from Ehrlich ascites carcinoma (EAC) cells by (NH4)2SO4 precipitation, gel filtration and ion-exchange chromatography. The enzyme has been partially characterized and compared with the characteristics of this enzyme of other normal and malignant cells. The EAC cell 3-PGK is composed of a single subunit of 47 kDa. It has a broad pH optimum (pH 6.0-7.5) for its enzymatic activity. The apparent Km values of 3-phosphoglycerate (3-PGA) and ATP for 3-PGK have been found out to be 0.25 mM and 0.1 mM respectively. Similar to 3-PGK of other cells, the EAC enzyme requires either Mg2+ or Mn2+ for full activity; the optimum concentrations of Mg2+ and Mn2+ are 0.8 mM and 0.5 mM respectively. When ATP and 3-PGA act as substrates, ADP, the reaction product of 3-PGK-catalyzed reaction has been found to inhibit this enzyme. Kinetic studies were made on the inhibition of ADP in presence of the substrates ATP and 3-PGA. Attempts to hybridize 3-PGK and glyceraldehyde-3-phosphate dehydrogenase of EAC cells by NAD or glutaraldehyde were unsuccessful.  相似文献   

8.
The important role of pyruvate kinase during malarial infection has prompted the cloning of a cDNA encoding Plasmodium falciparum pyruvate kinase (pfPyrK), using mRNA from intraerythrocytic-stage malaria parasites. The full-length cDNA encodes a protein with a computed molecular weight of 55.6 kDa and an isoelectric point of 7.5. The purified recombinant pfPyrK is enzymatically active and exists as a homotetramer in its active form. The enzyme exhibits hyperbolic kinetics with respect to phosphoenolpyruvate and ADP, with K(m) of 0.19 and 0.12 mM, respectively. pfPyrK is not affected by fructose-1,6-bisphosphate, a general activating factor of pyruvate kinase for most species. Glucose-6-phosphate, an activator of the Toxoplasma gondii enzyme, does not affect pfPyrK activity. Similar to rabbit pyruvate kinase, pfPyrK is susceptible to inactivation by 1mM pyridoxal-5'-phosphate, but to a lesser extent. A screen for inhibitors to pfPyrK revealed that it is markedly inhibited by ATP and citrate. Detailed kinetic analysis revealed a transition from hyperbolic to sigmoidal kinetics for PEP in the presence of citrate, as well as competitive inhibitory behavior for ATP with respect to PEP. Citrate exhibits non-competitive inhibition with respect to ADP with a K(i) of 0.8mM. In conclusion, P. falciparum expresses an active pyruvate kinase during the intraerythrocytic-stage of its developmental cycle that may play important metabolic roles during infection.  相似文献   

9.
Type B nucleoside-diphosphatase was purified from membranes of rat brain by solubilization with a non-ionic detergent and successive column chromatographies on DEAE-cellulose DE-52, concanavalin-A-Sepharose, Bio-Gel HT, blue-Sepharose CL-6B, chelating Sepharose 6B, Ultrogel AcA44 and TSK gel G3000 SW. The purified enzyme gave a single protein band on SDS/polyacrylamide gel electrophoresis and its molecular mass was estimated to be 75 kDa. It hydrolyzed thiamin diphosphate as well as GDP, IDP and UDP. Thiamin diphosphate (TPP) was hydrolyzed twice as efficiently as nucleoside diphosphates in the presence of Mn2+ at pH 7.4. The Km values for TPP, GDP, IDP and UDP were 0.66, 0.40, 0.54 and 1.06 mM respectively. ATP, ADP and pyridoxal 5'-phosphate inhibited thiamin-pyrophosphatase activity competitively and their Ki values were 2.3 mM, 1.0 mM and 0.59 mM respectively. The optimum pH of thiamin-pyrophosphatase activity was 7.4 in the presence of Mn2+ and that of GDP-hydrolytic activity was 6.5 in the presence of Mg2+.  相似文献   

10.
The hydrogenosomal enzyme ATP:AMP phosphotransferase (adenylate kinase) (EC 2.7.4.3) was purified to apparent homogeneity from the bovine parasite Tritrichomonas foetus. A fraction enriched for hydrogenosomes was obtained from cell homogenates which had been subjected to differential and isopycnic centrifugation. Adenylate kinase was solubilized in 50 mM Tris-HCl, pH 7.3, containing 0.8% Triton X-100, and purified by sequential Affi-Gel blue affinity chromatography and high-performance liquid chromatography gel filtration. The purified enzyme, a monomer of Mr 29,000, exhibited Km values of 100, 195, and 83 microM for ADP, ATP, and AMP, respectively. Substituting other mono-, di-, and trinucleotides for AMP, ADP, and ATP gave less than half the maximal activity. Full enzyme activity requires Mg2+, but Mn2+ and Co2+ yield half maximal activity. The enzyme has a broad optimal pH range between pH 6 and 9. The enzyme was competitively inhibited by P1,P5-di(adenosine-5')pentaphosphate, a specific adenylate kinase inhibitor: the Ki was 150 nM. The enzyme was also inhibited with 5,5'-dithiobis(2-nitrobenzoic acid), and this inhibition could be reversed by the addition of 2 mM dithiothreitol. T. foetus adenylate kinase has similar catalytic and physical properties to that of the biologically closely related human parasite Trichomonas vaginalis.  相似文献   

11.
Extracts of Acetobacter xylinum catalyze the phosphorylation of glycerol and dihydroxyacetone (DHA) by adenosine 5'-triphosphate (ATP) to form, respectively, L-alpha-glycerophosphate and DHA phosphate. The ability to promote phosphorylation of glycerol and DHA was higher in glycerol-grown cells than in glucose- or succinate-grown cells. The activity of glycerol kinase in extracts is compatible with the overall rate of glycerol oxidation in vivo. The glycerol-DHA kinase has been purified 210-fold from extracts, and its molecular weight was determined to be 50,000 by gel filtration. The glycerol kinase to DHA kinase activity ratio remained essentially constant at 1.6 at all stages of purification. The optimal pH for both reactions was 8.4 to 9.2. Reaction rates with the purified enzyme were hyperbolic functions of glycerol, DHA, and ATP. The Km for glycerol is 0.5 mM and that for DHA is 5 mM; both are independent of the ATP concentration. The Km for ATP in both kinase reactions is 0.5 mM and is independent of glycerol and DHA concentrations. Glycerol and DHA are competitive substrates with Ki values equal to their respective Km values as substrates. D-Glyceraldehyde and l-Glyceraldehyde were not phosphorylated and did not inhibit the enzyme. Among the nucleotide triphosphates tested, only ATP was active as the phosphoryl group donor. Fructose diphosphate (FDP) inhibited both kinase activities competitively with respect to ATP (Ki= 0.02 mM) and noncompetitively with respect to glycerol and DHA. Adenosine 5'-diphosphate (ADP) and adenosine 5'-monophosphate (AMP) inhibited both enzymic activities competitively with respect to ATP (Ki (ADP) = 0.4 mM; Ki (AMP) =0.25 mM). A. xylinum cells with a high FDP content did not grow on glycerol. Depletion of cellular FDP by starvation enabled rapid growth on glycerol. It is concluded that a single enzyme from A. xylinum is responsible for the phosphorylation of both glycerol and DHA. This as well as the sensitivity of the enzyme to inhibition by FDP and AMP suggest that it has a regulatory role in glycerol metabolism.  相似文献   

12.
1. The 1-P-fructokinase (1-PFK) and 6-P-fructokinase (6-PFK) from Pseudmonas doudoroffii were partially purified by a combination of (NH4)2SO4 fractionation and DEAE-Sephadex column chromatography. The pH optima of these enzymes were 9.0 and 8.5, respectively. 2. When the concentrations of the substrates of the 1-PFK reaction were varied, Michaelis-Menten kinetics were observed. The Kms for D-fructose-1-P (F-1-P) and ATP were 3.03 X 10(-4) M and 3.39 X 10(-4) M, respectively. Variation of MgCl2 at fixed concentrations of F-1-P and ATP resulted in sigmoidal kinetics; about 10 mM MgCl2 was necessary for maximal activity. Activity of 1-PFK was inhibited when the ratio of ATP:Mg++ was higher than 0.5, suggesting that ATP:2Mg++ was the substrate and that free ATP was inhibitory. Although an absolute requirement for K+ or NH4+ could not be demonstrated, these cations stimulated the rate of the reaction. Activity of 1-PFK was not significantly affected by 3 mM AMP, cyclic-AMP, Pi, D-fructose-6-P (F-6-P), ADP, P-enolpyruvate (PEP), pyruvate, citrate, or L-gluamate. 3. Sigmoidal kinetics were observed for 6-PFK when the concentration of F-6-P was increased and the level of ATP was kept constant. Activity of 6-PFK was increased by ADP, inhibited by PEP, and unaffected by 3 mM AMP, cyclic-AMP, Pi, F-1-P, pyruvate, or citrate.  相似文献   

13.
Electrophoretically homogeneous phosphoglucomutase (PGM) with specific activity of 3.6 units/mg protein was isolated from pea (Pisum sativum L.) chloroplasts. The molecular mass of this PGM determined by gel-filtration is 125 +/- 4 kD. According to SDS-PAGE, the molecular mass of subunits is 65 +/- 3 kD. The Km for glucose-1-phosphate is 18.0 +/- 0.5 microM, and for glucose-1, 6-diphosphate it is 33 +/- 0.7 microM. At glucose-1-phosphate and glucose-1,6-diphosphate concentrations above 0.5 and 0.2 mM, respectively, substrate inhibition is observed. The enzyme has optimum activity at pH 7.9 and 35 degrees C. Mg2+ activates the PGM. Mn2+ activates the enzyme at concentrations below 0.2 mM, while higher concentrations have an inhibitory effect. The activity of the PGM is affected by 6-phosphogluconate, fructose-6-phosphate, NAD+, ATP, ADP, citrate, and isocitrate.  相似文献   

14.
1. Pigeon erythrocyte pyruvate kinase (PK) was purified 22,000 fold by successive column chromatography on Sephadex DEAE A-50 and Red Agarose. The resulting enzyme preparation had a specific activity of 815.3 U/mg protein and an overall yield of 18.5%. 2. The molecular weight, as determined by gel filtration on Sephadex G-200 was 152,000. 3. Isoelectric focusing in the pH range of 3-10 showed that pigeon erythrocyte contained at least 3 PK isozymes with isoelectric points of 5, 5.7 and 6. 4. The variation of activity of PK at various ADP and phosphoenolpyruvate (PEP) concentrations was studied. The Km values for ADP and PEP were 0.40 and 0.46 mM respectively. 5. The enzyme was activated by FDP, and inhibited by ATP, highly phosphorylated inositol derivatives and 2,3-DPG: 6. It was activated by K+ and Mg2+ ions. 7. Phosphorylated hexoses and Pi stimulated the activity of PK. 8. The regulatory role of PK of pigeon erythrocytes, which lack the typical 2,3-DPG bypass, is discussed.  相似文献   

15.
S K Ng  M Wong    I R Hamilton 《Journal of bacteriology》1982,150(3):1252-1258
Oxaloacetate decarboxylase was purified to 136-fold from the oral anaerobe Veillonella parvula. The purified enzyme was substantially free of contaminating enzymes or proteins. Maximum activity of the enzyme was exhibited at pH 7.0 for both carboxylation and decarboxylation. At this pH, the Km values for oxaloacetate and Mg2+ were at 0.06 and 0.17 mM, respectively, whereas the Km values for pyruvate, CO2, and Mg2+ were 3.3, 1.74, and 1.85 mM, respectively. Hyperbolic kinetics were observed with all of the aforementioned compounds. The Keq' was 2.13 X 10(-3) mM-1 favoring the decarboxylation of oxaloacetate. In the carboxylation step, avidin, acetyl coenzyme A, biotin, and coenzyme A were not required. ADP and NADH had no effect on either the carboxylation or decarboxylation step, but ATP inhibited the carboxylation step competitively and the decarboxylation step noncompetitively. These types of inhibition fitted well with the overall lactate metabolism of the non-carbohydrate-fermenting anaerobe.  相似文献   

16.
The important role of pyruvate kinase during malarial infection has prompted the cloning of a cDNA encoding Plasmodium falciparum pyruvate kinase (pfPyrK), using mRNA from intraerythrocytic-stage malaria parasites. The full-length cDNA encodes a protein with a computed molecular weight of 55.6 kDa and an isoelectric point of 7.5. The purified recombinant pfPyrK is enzymatically active and exists as a homotetramer in its active form. The enzyme exhibits hyperbolic kinetics with respect to phosphoenolpyruvate and ADP, with Km of 0.19 and 0.12 mM, respectively. pfPyrK is not affected by fructose-1,6-bisphosphate, a general activating factor of pyruvate kinase for most species. Glucose-6-phosphate, an activator of the Toxoplasma gondii enzyme, does not affect pfPyrK activity. Similar to rabbit pyruvate kinase, pfPyrK is susceptible to inactivation by 1 mM pyridoxal-5′-phosphate, but to a lesser extent. A screen for inhibitors to pfPyrK revealed that it is markedly inhibited by ATP and citrate. Detailed kinetic analysis revealed a transition from hyperbolic to sigmoidal kinetics for PEP in the presence of citrate, as well as competitive inhibitory behavior for ATP with respect to PEP. Citrate exhibits non-competitive inhibition with respect to ADP with a Ki of 0.8 mM. In conclusion, P. falciparum expresses an active pyruvate kinase during the intraerythrocytic-stage of its developmental cycle that may play important metabolic roles during infection.  相似文献   

17.
Phosphoribulokinase (ATP:D — ribulose-5-phosphate 1-phosphotransferase, EC 2.7.1.19; PRuK) from immature pods of Brassica was purified to apparent homogeneity with about 31% recovery using ammonium sulphate fractionation, gel filtration through Sepharose CL-6B and ion exchange chromatography on DEAE-Sephadex A-50. The purified enzyme, having molecular mass of about 180 kD, was heterotetramer with subunit molecular mass of 48, 47, 41 and 33 kD. The enzyme had an absolute requirement for a divalent cation Mg2+ and a monovalent cation K+for optimal activity. At optimum pH of 8.0–8.4, the enzyme showed typical hyperbolic response for both the substrates with Km values of 333 μM and 100 μM, respectively for Ru5P and ATP. The enzyme was inhibited by RU-1, 5-P2, 6-phosphogluconate and AMP, and activatded by glu-1-P, glu-6-P and Pl. RU-1, 5-P2 and 6-phosphogluconate inhibited the enzyme competitively with respect to Ru5P and non-competitively with respect to ATP. It appears that the activity of the Brassica pod enzyme besides being controlled at the level of metabolites, is regulated by light and energy status of the cell.  相似文献   

18.
Phosphofructokinase from oyster (Crassostrea virginica) adductor muscle occurs in a single electrophorectic form at an activity of 8.1 mumol of product formed per minute per gram wet weight. The enzyme was purified to homogeneity by a novel method involving extraction in dilute ethanol and subsequent precipitation with polyethylene glycol. Oyster adductor phosphofructokinase has a molecular weight of 3400000 +/- 20000 as measured by Sephadex gel chromatography. Mg2+ or Mn2+ can satisfy the divalent ion requirement while ATP, GTP, or ITP can serve as phosphate donors for the reaction. Oyster adductor phosphofructokinase displays hyperbolic saturation kinetics with respect to all substrates (fructose 6-phosphate, ATP, and Mg2+) at either pH 7.9 OR PH 6.8. The Michaelis constant for fructose 6 phosphate at pH 6.8, the cellular pH of anoxic oyster tissues, is 3.5 mM. In the presence of AMP, by far the most potent activator and deinhibitor of the enzyme, this drops to 0.70 mM. Many traditional effectors of phosphofructokinase including citrate, NAD(P)H,Ca2+, fructose 1,6-bisphosphate, 3-phosphoglycerate, ADP, and phosphoenolpyruvate do not alter enzyme activity when tested at their physiological concentrations. Monovalent ions (K +, NH4+) are activators of the enzyme. ATP and arginine phosphate are the only compounds found to inhibit the adductor enzyme. The inhibitory action of both can be reversed by physiological concentrations of AMP(0.2- 1.0mM) and to a lesser extent by high concentrations of Pi (20 mM) and adenosine 3' :5'-monophosphate (0.1 mM). The two inhibitors exhibit very different pH versus inhibition profiles. The Ki (ATP) decreases from 5.0 mM to 1.3 mM as the pH decreases from 7.9 to 6.8, whereas the Ki for arginine phosphate increases from 1.3 mM to 4.5 mM for the same pH drop. Of all compounds tested, only AMP, within its physiological range, activated adductor phosphofructokinase significantly at low pH values. The kinetic data support the proposal that arginine phosphate, not ATP or citrate, is the most likely regulator of adductor phosphofructokinase in vivo under aerobic, high tissue pH, conditions. In anoxia, the depletion of arginine phosphate reserves and the increase in AMP concentrations in the tissue, coupled with the increase in the Ki for arginine phosphate brought about by low pH conditions, serves to activate phosphofructokinase to aid maintenance of anaerobic energy production.  相似文献   

19.
We report the kinetic characterization of a previously unidentified pyruvate kinase (PK) activity in extracts from Entamoeba histolytica trophozoites. This activity was about 74% of the activity of pyruvate phosphate dikinase. EhPK differed from most PKs in that its pH optimum was 5.5-6.5 and was inhibited by high PEP concentrations (1-5mM); these are concentrations at which PK is usually assayed. The optimal temperature was above 40 degrees C with negligible activity below 20 degrees C. EhPK exhibited hyperbolic kinetics with respect to both PEP (K(m) = 0.018 mM) and ADP (K(m) = 1.05 mM). However, it exhibited a sigmoidal behavior with respect to PEP at sub-saturating ADP concentrations. EhPK did not require monovalent cations for activity. Fructose-1,6 bisphosphate was a potent non-essential activator; it increased the affinity for ADP without modification of the V(max) or the affinity for PEP. Phosphate, citrate, malate, and alpha-ketoglutarate significantly inhibited EhPK activity. A putative EhPK gene fragment found in EhDNA was analyzed. The data indicate that E. histolytica trophozoites contain an active PK, which might contribute to the generation of glycolytic ATP for parasite survival.  相似文献   

20.
Citrate synthase (citrate-oxaloacetate lyase (CoA acetylating), EC 4.1.3.7) has been purified to electrophoretic homogeneity from a marine Pseudomonas. The enzyme was made up of identical subunits, with a molecular wieght of about 53 000, as determined by sodium dodecyl sulphate - polyacrylamide gel electrophoresis. The native enzyme (citrate synthase II, CS II) could be dissociated by dialysis against 20 mM phosphate (Pi), pH 7; the enzyme thus obtained (citrate synthase I, CS I) was still active, but presented different molecular weight and kinetic and regulatory properties. CS II was activated by adenosine monophosphate (AMP), Pi, and KCl, and inhibited by reduced nicotinamide adenine dinucleotide (NADH), being apparently insensitive to adenosine triphosphate (ATP) and adenosine diphosphate (ADP). The inhibition by NADH was completely counteracted by 0.1 mM AMP, but not by 50 mM Pi or 0.1 M KCl. The activation by KCl and Pi, or by KCl and AMP was nearly additive, whereas that by AMP and Pi was not. The activators acted essentially by increasing Vmax, although they also caused a decrease in the Km values. CS I was inhibited by ATP, ADP, AMP, and KCl, and was insensitive to NADH. CS I could be reassociated after elimination of Pi by dialysis, regaining the higher molecular weight and the activation by AMP characteristic of CS II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号