首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
S-Adenosyl-l-homocysteine hydrolase (EC 3.3.1.1) has been isolated from spinach-beet leaves and purified 100-fold. The enzyme catalyzes both the hydrolysis of S-adenosyl-l-homocysteine to adenosine and l-homocysteine and its synthesis from these compounds. The equilibrium constant for the reaction is 1.8 × 10?6 in relation to hydrolysis. The enzyme shows optimum activity at pH 8.5. Enzyme preparations were stabilized by the addition of bovine serum albumin. The Km for S-adenosylhomocysteine was 41 μm in the hydrolysis reaction and for adenosine, dl-homocysteine, and l-homocysteine it was 13 μm, 2.2 mm, and 1.2 mm, respectively.The enzyme was inhibited by S-adenosylmethionine, homocysteine, and adenine. These inhibitions and the Km values determined are discussed in relation to the regulation of the enzyme in vivo and especially its effect on methylation reactions using S-adenosylmethionine as methyl donor.  相似文献   

3.
Gibberellic acid (GA3) brought about a 3-fold stimulation of AdoMet synthetase activity in wheat aleurones. At the qualitative level, three isozymes of AdoMet synthetase were observed by DE-52 chromatography in GA3-treated wheat aleurones. In contrast, the control wheat aleurones showed a single isozyme. Thus the phytohormone (GA3, 1 microM) induced two additional isozymes of AdoMet synthetase in wheat aleurones. The activity of all the three isozymes in GA3-treated aleurones was considerably decreased by the simultaneous presence of abscisic acid (ABA, 10 microM). Cycloheximide (20 micrograms/ml) also significantly lowered the levels of the three isozymes of AdoMet synthetase in Ga3-treated aleurones, thereby suggesting the requirement of de-novo protein synthesis for the complete induction of isozymes. However, wheat aleurones excised from embryonated wheat seeds, did not require the application of GA3 for the induction of two additional isozymes of AdoMet synthetase. Apparently, the transport of GA3 from the embryo to aleurones induced two new isozymes of AdoMet synthetase. Three isozymes of AdoMet synthetase were also observed in wheat embryos excised from germinated wheat grains, without exogenous application of GA3. The molecular weight of all the three isozymes of AdoMet synthetase in wheat system is 181,000. The molecular weight of the subunit of the enzyme is 84,000. The dimeric nature of AdoMet synthetase was established by SDS-PAGE analysis of the purified enzyme. In-vitro hybridization of two flanking isozymic peaks I and III by NaCl-freeze-thaw method resulted in the appearance of an additional middle activity peak (isozyme II). However, no additional isozymic peaks were generated when isozymic peaks I and III were individually given a freeze-thaw treatment. Thus the flanking isozymic peaks I and III represent homodimers that differed in their net charge. In contrast, the middle isozymic activity peak II, when subjected to NaCl-freeze-thaw treatments yielded two additional isozymic peaks, I and III, thereby suggesting its heterodimeric nature. We envisage that the three isozymes in GA3-treated wheat aleurone layers are formed by the random dimerization of two classes of enzyme subunits. The two enzyme subunits which differ in their net charge could be the product of two genes of AdoMet synthetase (SAM1 and SAM2). Based on this assumption, we propose that a single isozyme I in water imbibed control wheat aleurones is the product of SAM1 gene of AdoMet synthetase. The occurrence of three isozymes in GA3-treated aleurones could be ascribed to the expression of an alternate gene of AdoMet synthetase (SAM2 gene).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
S-adenosylmethionine synthetase was studied from bloodstream forms of Trypanosoma brucei brucei, the agent of African sleeping sickness. Two isoforms of the enzyme were evident from Eadie Hofstee and Hanes-Woolf plots of varying ATP or methionine concentrations. In the range 10–250 μM the Km for methionine was 20 μM, and this changed to 200 μM for the range 0.5–5.0 mM. In the range 10–250 μM the Km for ATP was 53 μM, and this changed to 1.75 mM for the range 0.5–5.0 mM. The trypanosome enzyme had a molecular weight of 145 kDa determined by agarose gel filtration. Methionine analogs including selenomethionine, L-2-amino-4-methoxy-cis but-3-enoic acid and ethionine acted as competitive inhibitors of methionine and as weak substrates when tested in the absence of methionine with [14C]ATP. The enzyme was not inducible in procyclic trypomastigotes in vitro, and the enzyme half-life was > 6 h. T. b. brucei AdoMet synthetase was inhibited by AdoMet (Ki 240 μM). The relative insensitivity of the trypanosome enzyme to control by product inhibition indicates it is markedly different from mammalian isoforms of the enzyme which are highly sensitive to AdoMet. Since trypanosomes treated with the ornithine decarboxylase antagonist DL-α-difluoromethylornithine accumulate AdoMet and dcAdoMet (final concentration ≈ 5 mM), this enzyme may be the critical drug target linking inhibition of polyamine synthesis to disruption of AdoMet metabolism.  相似文献   

5.
The enzymatic production of α-dehydrobiotin (α-DHB), an antibiotic, from biotinyl-CoA using acyl-CoA oxidase and from biotin using a coupling system of biotinyl-CoA synthetase and acyl-CoA oxidase was developed. Acyl-CoA oxidase was found to show activity for biotinyl-CoA. Km and Vmax values of acyl-CoA oxidase for biotinyl-CoA were 75 μM and 3.92 μmol min−1 mg−1, respectively. Optimum reaction conditions for the α-DHB production from biotin were examined. The maximum production of α-DHB (4.29 μmol ml−1) was obtained, when the reaction was carried out at 30°C for 36 h in a mixture consisting of 100 mM potassium phosphate buffer (pH 8.0), 20 mM biotin, 20 mM ATP, 60 mM CoA, 20 mM MgCl2, 2 units of biotinyl-CoA synthetase, 90 units of acyl-CoA oxidase and 25 units of catalase in a total volume of 0.6 ml under aerobic conditions. The product was purified from 14 ml of the reaction mixture and 10 mg of crystals with white needle form were obtained. From NMR, mass spectra and other physical analyses, this compound was identified as (+)-trans-α-DHB.  相似文献   

6.
S-adenosylmethionine (AdoMet) synthetase catalyzes a unique two-step enzymatic reaction leading to formation of the primary biological alkylating agent. The crystal structure of Escherichia coli AdoMet synthetase shows that the active site, which lies between two subunits, contains four lysines and one histidine as basic residues. In order to test the proposed charge and hydrogen bonding roles in catalytic function, each lysine has been changed to an uncharged methionine or alanine, and the histidine has been altered to asparagine. The resultant enzyme variants are all tetramers like the wild type enzyme; however, circular dichroism spectra show reductions in helix content for the K245*M and K269M mutants. (The asterisk denotes that the residue is in the second subunit.) Four mutants have k(cat) reductions of approximately 10(3)-10(4)-fold in AdoMet synthesis; however, the k(cat) of K165*M variant is only reduced 2-fold. In each mutant, there is a smaller catalytic impairment in the partial reaction of tripolyphosphate hydrolysis. The K165*A enzyme has a 100-fold greater k(cat) for tripolyphosphate hydrolysis than the wild type enzyme, but this mutant is not activated by AdoMet in contrast to the wild type enzyme. The properties of these mutants require reassessment of the catalytic roles of these residues.  相似文献   

7.
小麦胆色素原脱氨酶的纯化及部分性质研究   总被引:1,自引:0,他引:1  
生物中四吡咯化合物合成的共同途径是由δ-氨基酮戊酸(δ-aminolevulinicacid,ALA)在δ-氨基酮戊酸脱水酶(δ-aminolevulinatedehydratase,ALAD)作用下合成胆色素原(porpho-bilinogen,P...  相似文献   

8.
We have purified S-adenosylmethionine (AdoMet) synthetase about 3000-fold from bovine brain extract. The Km values of the enzyme for L-methionine and ATP were 10 and 50 microM, respectively. An apparent molecular mass of the enzyme was estimated to be 160 kDa by gel filtration on a Sephacryl S-200 column. Sucrose density gradient centrifugation gave a sedimentation coefficient of 8 S. Polyacrylamide gel electrophoresis of the purified enzyme in native system revealed a single protein band, whereas two polypeptide bands with molecular masses of 48 kDa (p48) and 38 kDa (p38) were observed in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme. Antibody against bovine brain AdoMet synthetase was prepared by injecting the purified enzyme into a rabbit. Immunoblot analysis revealed that the antibody recognized both p48 and p38 in the impure enzyme preparations from bovine brain as well as in the purified enzyme. Specific antibodies against p48 and p38 were separated from the immunoglobulin fraction by an affinity purification, both of which inhibited the enzyme activity. These results indicate that AdoMet synthetase from bovine brain consists of two different polypeptides, p48 and p38.  相似文献   

9.
Sepiapterin reductase from rat erythrocyte hemolysate was purified 2000-fold to apparent homogeneity with 30% yield. The specific activity of the purified enzyme was 18 units/mg protein, and its molecular weight was 55 000. The enzyme consists of two identical subunits, each of which has a molecular weight of 27 500. The enzyme showed a single peak by isoelectric focusing with a pI of 4.9 and partial specific volume of 0.73 cm3/g. The amino acid composition was determined. pH optimum of the enzyme was 5.5. The equilibrium constant of 2.2·109 of the enzyme showed that the equilibrium lies much in favor of dihydrobiopterin formation from sepiapterin in rat erythrocytes. From steady-state kinetic measurements, ordered bi-bi mechanism was proposed to the reaction of sepiapterin reductase in which NADPH binds to free enzyme and sepiapterin binds next. NADP+ is released after the release of dihydrobiopterin. The Km values for sepiapterin and NADPH were 15.4 μM and 1.7 μM, respectively, and the Vmax value was 21.7 μmol/min per mg.  相似文献   

10.
(1) Dopamine, β-hydroxylase (EC 1.14.2.1) was purified from bovine adrenal medullae according to the method of Foldes , Jeffrey , Preston and Austin (1972). (2) The kinetics, pH optimum and the effect of Cu2+ ions on the purified enzyme were found to resemble those of the enzyme isolated by more involved procedures. (3) The sedimentation coefficient (s20) of the homogeneous enzyme in 10 mM-phosphate buffer, pH 7·2, containing 0·1 M-NaCI was found to be 10·24 ± 0·12 (S.E.M. of 10 determinations). (4) The effect of pH on the mol. wt. of the enzyme was investigated and no large deviation was found from the native mol. wt. of 290,000 in the pH range 3·9 to 11·1. (5) The amino acid analysis of dopamine β-hydroxylase is presented, and is contrasted to that of chromogranin A purified from the same chromaffin granule lysate. (6) Treatment with either 8 M-urea or 0·1% (w/v) sodium dodecyl sulphate was found to dissociate the enzyme into three similar, non-active subunits, each of mol. wt. of the order of 100,000.  相似文献   

11.
Ribulose-1,5-bisphosphate carboxylase/oxygenase has been purified to electrophoretic homogeneity from comfrey, Symphytum spp. Sodium dodecyl sulfate polyacrylamide and polyacrylamide gel electrophoresis studies on the purified product showed no extraneous proteins. Comparisons of the electrophoretic mobilities of the subunits to those of standard proteins indicated a large subunit MW of 50 000 and a small subunit of 12 700, which for an octameric structure of each subunit indicates a native MW of 502 000. Specific activities of the comfrey enzyme ranged from 1.2 to nearly 2 μmol 14CO2 fixed/min.mg of protein over several preparations and were maintained for months when stored from the sucrose gradient at ? 70°. The specific activities depended critically on the amounts of enzyme used in the assay even under saturating conditions of substrates and cofactors. The effective pH dependence for carboxylase catalysis peaked near 7.4, which apparently is the lowest elective optimum yet reported for this enzyme from any source. However, on a constant carbon dioxide basis the pH dependence profile was reversed with a maximum near pH 8.6 which was 0.4 units higher than the value for the spinach enzyme. The Kms for carbon dioxide and ribulose-1,5-bisphosphate at pH 7.5 were 130 μM and 30 μM, respectively, which are comparable to the accepted values for the carboxylase from spinach at pH 7.2.  相似文献   

12.
  • 1.1. Biliverdin reductase from the liver of eel, Anguilla japonica was characterized and purified with a novel enzymatic staining method on polyacrylamide electrophoretic gel.
  • 2.2. This enzyme could use both NADPH and NADH as coenzyme. The Km of NADPH was 5.2 μM, while that of NADH was 5.50 μM.
  • 3.3. The optimum reaction pH for using HADPH as coenzyme was 5.3. That for NADH was 6.1. The optimum reaction temperature is 37°C.
  • 4.4. When NADPH was used as coenzyme, the Km of biliverdin was 0.6 μM. When NADH was used as coenzyme, the Km of biliverdin was 7.0 μM.
  • 5.5. The activity of the enzyme was inhibited by the concentration of biliverdin. Also, the potency of the enzyme was much less than that of the analogous enzyme isolated from mammals.
  • 6.6. This is a fairly stable enzyme with a mol. wt around 67,000. Its estimated pI was pH 3.5–4.0.
  • 7.7. This is the first time biliverdin reductase has been isolated and characterized from a vertebrate other than mammals. The property of it is quite different from that of mammals.
  相似文献   

13.
DNA-dependent RNA polymerase II (RNAP II) was purified from wheat embryos germinated for 0, 12, 24, and 36 hours and examined with several polyacrylamide gel electrophoretic systems. A changing electrophoretic pattern of RNAP II was observed on nondenaturing polyacrylamide gels. Subunit structure analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) indicated that from ungerminated embryos, RNAP IIA was almost exclusively obtained which has a subunit structure identical to that established for wheat germ RNAP II previously (Jendrisak, Burgess 1977 Biochemistry 16: 1959-1964). Twelve polypeptides with molecular weights × 10−3 of 220, 140, 42, 40, 27, 25, 21, 20, 17.8, 17.0, 16.3, and 16.0 were routinely found to be associated with the purified enzyme. From embryos germinated for 36 hours, RNAP IIB was almost exclusively obtained which has a largest subunit of 180,000 mol wt instead of 220,000. From embryos germinated for 24 hours, an approximately equimolar mixture of RNAP IIA and IIB was obtained. Peptide maps of the 220,000 and 180,000 mol wt polypeptides of RNAP IIA and IIB were virtually identical, indicative of a precursor-product relationship for the two polypeptides. In addition to these results, SDS-PAGE indicated that the stoichiometry of the 27,000 mol wt polypeptide increased at the expense of the 25,000 mol wt polypeptide during germination and concomitantly with the appearance of the 180,000 molecular weight polypeptide. No modifications (e.g. gain, loss, or altered mobilities on analytical gels) in any of the other RNAP II subunits were observed in enzyme purified from embryos after various times of germination as determined by a variety of electrophoretic analyses under denaturing conditions.  相似文献   

14.
In order to derive information about possible mechanisms by which the sperm head is converted into the male pronucleus during fertilization in the rabbit, unfertilized egg homogenate was assayed for two enzyme activities. Protamine was extracted from rabbit sperm, purified, and labelled with [14C] in an in vitro reaction and used as a probe to assay for a protein kinase which could transfer [32P]PO4 from [γ-32P]ATP onto the substrate. A kinase with a pH optimum of approximately 8.0 to 8.5 is described. Assays for the enzyme glutathione reductase were performed using homogenates from eggs or embryos at three early stages of development. Results suggest that oocytes can oxidize 2.58 × 10?6 μmol NADPH per minute per oocyte, unfertilized eggs 5.16 × 10?7 μmol NADPH per minute per ovum, and 20- to 24-hour postcoitus fertilized eggs 2.30 × 10?6 μmol NADPH per minute per ovum. The relevance of these observations to male pronuclear formation is discussed.  相似文献   

15.
A kinetic analysis of MspI DNA methyltransferase (M.MspI) is presented. The enzyme catalyzes methylation of lambda-DNA, a 50-kilobase pair linear molecule with multiple M.MspI-specific sites, with a specificity constant (kcat/KM) of 0.9 x 10(8) M-1 s-1. But the values of the specificity constants for the smaller DNA substrates (121 and 1459 base pairs (bp)) with single methylation target or with multiple targets (sonicated lambda-DNA) were less by an order of magnitude. Product inhibition of the M.MspI-catalyzed methylation reaction by methylated DNA is competitive with respect to DNA and noncompetitive with respect to S-adenosylmethionine (AdoMet). The S-adenosylhomocysteine inhibition of the methylation reaction is competitive with respect to AdoMet and uncompetitive with respect to DNA. The presteady state kinetic analysis showed a burst of product formation when AdoMet was added to the enzyme preincubated with the substrate DNA. The burst is followed by a constant rate of product formation (0.06 mol per mol of enzyme s-1) which is similar to catalytic constants (kcat = approximately 0.056 s-1) measured under steady state conditions. The isotope exchange in chasing the labeled methyltransferase-DNA complex with unlabeled DNA and AdoMet leads to a reduced burst as compared with the one involving chase with labeled DNA and AdoMet. The enzyme is capable of exchanging tritium at C-5 of target cytosine in the substrate DNA in the absence of cofactor AdoMet. The kinetic data are consistent with an ordered Bi Bi mechanism for the M.MspI-catalyzed DNA methylation where DNA binds first.  相似文献   

16.
Pattanakitsakul S. and Ruenwongsa P. 1984. Characterization of thymidylate synthetase and dihydrofolate reductase from Plasmodium berghei. International Journal for Parasitology14: 513–520. Thymidylate synthetase (TS) and dihydrofolate reductase (DHFR) from Plasmodium berghei were copurified by Sephacryl S-300 and Sephadex G-200 column chromatography and found to have an apparent mol. wt of 132,000. Electrophoresis of the partially purified enzyme under non-denaturing conditions showed the comigration of TS and DHFR. The mol. wt of TS was estimated to be 65,000 on SDS-gel electrophoresis. Both enzymes exhibit a broad pH optimum in the range of 6.5–8.0. Urea, NaCl and KC1 inhibit TS but activate DHFR. For TS, the apparent Km for dUMP and methylene-tetrahydrofolate have been found to be 71.4 and 312.5 μM, respectively. For DHFR, the apparent Km for dihydrofolate and NADPH have been found to be 4.4 and 12.5 μM, respectively. Inhibition of DHFR by pyrimethamine, methotrexate and trimethoprim are competitive with dihydrofolate with Kis of 0.63, 0.5 and 1.88 nM, respectively. FdUMP inhibition of TS is competitive with dUMP with Kis of 0.05 μM, but inhibition by methotrexate is uncompetitive with dUMP and MTHF with Kii of 103 and 23 μM, respectively.  相似文献   

17.
Alteration in properties of thymidylate synthetase from pyrimethamine-resistant smodium chabaudi. International Journal for Parasitology16: 483–490. Thymidylate synthetase from cloned strains of pyrimethamine-sensitive and resistant P. chubaudi were partially purified and characterized. The enzyme from both strains have equal mol. wt of 120,000 as estimated by Sephadex G-200 column chromatography. The enzyme from drug-sensitive parasites has an optimum pH of 6.5–7.5 and is stable at pH 4–11 while that from drug-resistant strain has an pH optimum of 7.0–8.0 and is stable at pH 5–10. The Km for methylenetetrahydrofolate are 206 ± 6 and 495 ± 5 μm for the enzyme from drug-resistant and sensitive parasites, respectively. The Km for dUMP of the enzyme from drug-resistant and sensitive parasites are 42 ± 1 and 49 ± 6 μm, respectively. Inhibition of the enzyme from both strains by FdUMP are competitive with dUMP; however,the Kis for the enzyme from drug-resistant strain (0.043 ± 0.005 μm) is less than that from drug-sensitive strain (0.11 ± 0.007 μm) by a factor of 2.5. The Kii for methotrexate with respect to methylenetetrahydrofolate of the enzyme from drug-resistant parasites (58 ± 3 μm) is 3 times larger than that from drug-sensitive parasites (17 ± 1 μm).  相似文献   

18.
DNA polymerase α-like from wheat embryos is found to purify closely associated with a tryptophanyl-tRNA synthetase activity. No other aminoacyl-tRNA synthetases were present. A purified preparation of wheat tryptophanyl-tRNA synthetase free of polymerase activity was able to stimulate plant DNA polymerase of the α-like type, while the γ-like polymerase from wheat embryos was not affected by the enzyme. We have not been able to find a diadenosine 5′, 5′′′-P1,P4-tetraphosphate binding activity associated to the polymerase-synthetase complex. We have also observed a specific inhibition by beef tRNATrp of DNA polymerase α-like activity, while other tRNAs will not change the enzyme activity.  相似文献   

19.
S-Adenosylmethionine (AdoMet) is the most widely used alkyl group donor in biological systems. The formation of AdoMet from ATP and L-methionine is catalyzed by S-adenosylmethionine synthetase (AdoMet synthetase). Elucidation of the conformations of enzyme-bound substrates, product, and inhibitors is important for the understanding of the catalytic mechanism of the enzyme and the design of new inhibitors. To obtain structural data for enzyme-bound substrates and product, we have used two-dimensional transferred nuclear Overhauser effect spectroscopy to determine the conformation of enzyme-bound AdoMet and 5'-adenylyl imidodiphosphate (AMPPNP). AMPPNP, an analogue of ATP, is resistant to the ATP hydrolysis activity of AdoMet synthetase because of the presence of a nonhydrolyzable NH-link between the beta- and gamma-phosphates but is a substrate for AdoMet formation during which tripolyphosphate is produced. AdoMet and AMPPNP both bind in an anti conformation about the glycosidic bond. The ribose rings are in C3'-exo and C4'-exo conformations in AdoMet and AMPPNP, respectively. The differences in ribose ring conformations presumably reflect the different steric requirements of the C5' substituents in AMPPNP and AdoMet. The NMR-determined conformations of AdoMet and AMPPNP were docked into the E. coli AdoMet synthetase active site taken from the enzyme.ADP. Pi crystal structure. Since there are no nonexchangeable protons either in the carboxy-terminal end of the methionine segment of AdoMet or in the tripolyphosphate segment of AMPPNP, these portions of the molecules were modeled into the enzyme active site. The interactions of AdoMet and AMPPNP with the enzyme predict the location of the methionine binding site and suggest how the positive charge formed on the sulfur during AdoMet synthesis is stabilized.  相似文献   

20.
Vitamin B12-dependent methionine synthetase (N5-methyItetrahydrofolate-homocysteine Bi2-methyltransferase; EC 2.1.1.13) was partially purified from two different types of photo-synthetic bacteria, Chromatium D and Rhodospirillum rubrum.

Chromatium D, which does not produce vitamin B12, possessed apomethionine synthetase when grown in the absence of the vitamin. Partially purified apoenzyme was converted to holoenzyme efficiently with CH3B12 or OHB12. Holo-methionine synthetase was purified 244 fold with 56.4 % recovery from Chromatium D cells grown with vitamin B12 added. The partially purified enzyme required reductants but was only partially dependent on S-adenosylmethionine.

On the other hand, Rsp. rubrum methionine synthetase which was always present as holoenzyme, in contrast with that of Chromatium D, was purified 40 fold with 2.8% recovery. The obtained preparation required S-adenosylmethionine and reductants for the enzyme activity. The optimal pH of Chromatium D enzyme and of Rsp. rubrum enzyme was in the range of 7.5~7.8 and 6.5~6.75, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号