首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrating N2-fixing indigenous legumes in smallholder farming systems has potential to alleviate some of the major soil fertility constraints associated with lack of nitrogen (N) inputs in many parts of Sub-SaharanAfrica. Studies were conducted under low (450–650 mm yr?1) and high (>800 mm yr?1) rainfall areas in Zimbabwe to investigate the establishment and nitrogen fixation patterns of fifteen indigenous legume species. The legume seeds were broadcast in mixtures at 120 seeds m?2 species?1 during 2004/05 and 2005/06 rainfall seasons.Eriosema ellipticum, Crotalaria ochroleuca andC. pallida had emergence rates above 15% compared with <10% forTephrosia radicans andIndigofera astragalina. Seed hardness accounted for >50% germination failure, while low viability explained 10–30%.Crotalaria ochroleuca andC. pallida attained a maximum biomass of 5–9 t ha?1 (dry weight) over six months, while species that reached peak biomass over three months (e.g.C. cylindrostachys andC. glauca) gave lowest yields of ≈0.5 t ha?1. Biennials,Neonotonia wightii, E. ellipticum and Tephrosia radicans, exhibited slow growth rates and only attained their maximum biomass of ≈2 t ha?1 in the second season. The legumes derived 60–99% of their N from the atmosphere, fixing 5–120 kg N ha?1 under low rainfall and 78–267 kg N ha?1 under high rainfall. These findings suggest that the legumes could contribute in restoring productivity of soils continuously cultivated with little or no nutrient inputs in most of Zimbabwe and similar agro-ecologies in SubSaharan Africa.  相似文献   

2.
The present study deals with the first systematic study on the isolation, characterization, and utilization of marine yeast for bioethanol production using seaweed biomass. The ability and efficiency of isolated marine yeast to grow and ferment sugar to ethanol in the presence of 2.5 % to 15 % salt concentration was validated by fermenting galactose in the presence of different salts at varied concentrations. Successively, this yeast was employed for fermentation of seaweed hydrolysate, containing high salt concentration, to ethanol. The hydrolysate having varying sugar as well as salt contents, from 2.7 % to 5.5 % and from 6.25 to 11.25 %, respectively, yielded 1.23–1.76 % ethanol. Through biochemical, fatty acid methyl ester analysis, and BioLog, the yeast was identified as Candida sp. The ability of this yeast to function at high salinity can be commercialized for its use to convert seaweed polysaccharide based hydrolysate, rich in salt, to ethanol without desalting process, ultimately making the process more efficient and economically viable. This is the first organized study for the utilization of marine yeast for converting Kappaphycus alvarezii, a red algal biomass, into ethanol as a byproduct, under highly saline condition.  相似文献   

3.
《Process Biochemistry》2007,42(3):444-448
The application of dye–ligand expanded bed chromatography adsorption (EBA) of glucose-6-phosphate dehydrogenase (G6PDH) from unclarified yeast extract was undertaken by using a commercially available expanded bed column (20 mm i.d.) and UpFront adsorbent (ρ = 1.5 g/mL) from UpFront Chromatography. The influence of biomass concentration on the adsorption capacity was explored by employing yeast extracts containing various biomass concentrations (5–30%, w/v). It was demonstrated that the biomass concentration had little effect on G6PDH adsorption performance. Feedstock containing 15% (w/v) biomass gave a relatively high recovery yield (>90%) of G6PDH compared to feedstock containing 30% (w/v) biomass, which gave a recovery of 75% G6PDH. Nevertheless, the enzyme specific activity of 7 U mg−1 with a purification factor of 6 was achieved in the feedstock containing biomass concentration of 30% (w/v). The generic applicability of dye–ligand as an affinity tool in expanded bed chromatography is discussed.  相似文献   

4.
Different morphologies of Mucor hiemalis were induced and used for the production of ethanol and biomass from rice straw through a separate hydrolysis and fermentation process. The yield of enzymatic hydrolysis was improved from 40.4% for the untreated straw to 80–93% by employing sodium hydroxide and concentrated phosphoric acid pretreatments with or without ultrasonication. The best hydrolysis performance was achieved after pretreatment by sodium hydroxide assisted with ultrasonication. The ethanol yields from the hydrolysates were 0.39–0.44 g/g depending on the pretreatment method and the fungus morphology. The yeast‐like form of the fungus showed faster glucose assimilation and slightly higher ethanol yield compared to the other morphologies. The biomass yield of mostly yeast‐like cells was more than the other morphologies (0.202–0.282 g/g glucose). Moreover, the biomass of the yeast‐like cells had more protein content (46.7–52.4 %) compared to filamentous cells (37.7–46.3 %). The cell wall, alkali‐insoluble material (AIM) of the biomass, represented 16.3–20.1% of the biomass. On average, total chitin‐chitosan content of AIM of the biomass of purely filamentous, mostly filamentous, mostly yeast‐like, and purely yeast‐like forms of the fungus was 0.460, 0.373, 0.330, and 0.336 g/g AIM of the biomass, respectively.  相似文献   

5.
An ascomycetous yeast strain isolated from activated sludge could decolorize Reactive Black 5 azo dye at 200 mg l?1 up to 90 % within 12–18 h under agitated condition. Yeast decolorization ability was investigated at different RB5 concentrations and, at higher dye concentration, 500 mg l?1, the decolorization was found to be 98 % after 36 h incubation time. Extensive decolorization (95–99 %) was obtained in presence of five other azo dyes, Reactive Orange 16, Reactive Red 198, Direct Blue 71, Direct Yellow 12, and Direct Black 22, by isolated yeast. HPLC analysis, UV–vis spectra and colorless biomass obtained after complete decolorization showed that the decolorization occured through a biodegradation mechanism. Decolorization was occurred during the exponential growth phase which is associated to primary metabolism. Laccase production by the yeast cells was not detected. The isolated yeast was characterized according to phenotypical and molecular procedures and was closely related (99 % identity) to Issatchenkia orientalis.  相似文献   

6.
cDNAs of barley α-amylase andA. niger glucoamylase were cloned in oneE. coli-yeast shuttle plasmid resulting in the construction of expression secretion vector pMAG15. pMAG15 was transformed intoS. cerevisiae GRF18 by protoplast transformation. The barley α-amylase andA. niger glucoamylase were efficiently expressed under the control of promoter and terminator of yeast PGK gene and their own signal sequence. Over 99% of the enzyme activity expressed was secreted to the medium. The recombinant yeast strain, S.cerevisiae GRF18 (pMAG15), hydrolyzes 99% of the starch in YPS medium containing 15% starch in 47 h. The glucose produced can be used for the production of ethanol.  相似文献   

7.
This paper presents the results of a study to determine the effect of Quillaja saponaria saponins on the lysis of industrial yeast strains. Cell lysis induced by saponin from Q. saponaria combined with the plasmolysing effect of 5% NaCl for Saccharomyces cerevisiae, Kluyveromyces marxianus yeasts biomass was conducted at 50 °C for 24–48 h. Membrane permeability and integrity of the yeast cells were monitored using fluorescent techniques and concentrations of proteins, free amino nitrogen (FAN) and free amino acids in resulting lysates were analyzed. Protein release was significantly higher in the case of yeast cell lysis promoted with 0.008% Q. saponaria and 5% NaCl in comparison to plasmolysis triggered by NaCl only.  相似文献   

8.
This study was focused on a comparison of growth and production properties of seven red yeast strains of the genus Rhodotorula, Sporobolomyces and Cystofilobasidium cultivated on glycerol substrate. Production of enriched yeast biomas and specific yeast metabolites (carotenoids, ergosterol, lipids) was evaluated on medium with glucose, pure technical glycerol and/or waste glycerol from biofuel production (40 g/L) and mixture of glycerol and glucose (1:3, 1:1, 3:1; C/N ratio 57 in all cultivations). All tested strains were able to utilize glycerol as the only carbon source. Production of biomass on waste glycerol was in most strains higher than in control as well as in medium with pure technical glycerol and reached 15.97–21.76 g/L. Production of carotenoids and ergosterol was better in glucose medium than in medium with glycerol only. Nevertheless, using glycerol medium with addition of glucose, higher yields of total carotenoids, beta-carotene and ergosterol were obtained than in control. The highest yields of total pigments were reached by Sporobolomyces roseus (3.60 mg/g cell dry weight (CDW); glycerol:glucose 1:3), Sporobolomyces salmonicolor (2.85 mg/g CDW; glycerol:glucose 1:3) and Rhodotorula glutinis (2.80 mg/g CDW; glycerol:glucose 3:1) In glucose medium, most tested strains except Cystofilobasidium capitatum (22.6 %) produced neutral lipids in the range of 11–15 %. Production of triacylglycerols in all strains was in 10–30 % better in glycerol medium, in which Rhodotorula aurantiaca and Sporobolomyces shibatanus also reached intracellular triacylglycerol concentrations up to 20 % of biomass. This study has shown that oleaginous red yeasts could have great potential for converting crude glycerol to valuable lipids and carotenoids in respect of efficient bioresources utilization.  相似文献   

9.
Apiotrichum curvatum ATCC 20509 (formerly Candida curvata D), a lipid-accumulating yeast, was grown in banana juice. The optimum conditions for biomass production in shake flasks were 30°C growth temperature, efficient aeration, a juice concentration of 25%, and preliminary heat treatment at less than sterilization conditions. Under controlled conditions in a fermentor, 20% banana juice was optimum. High concentrations of yeast extract (0.3%) increased biomass production by 40% but decreased oil production by 30%. A lower yeast extract concentration (0.05%) increased biomass production by 2% and oil production by 25%. The best growth and oil production were observed when asparagine (1.4 g/liter) and mineral salts were added to the banana juice. The addition of minerals seemed to improve the utilization of carbon. Growth inhibition was observed when the fermentor was aerated with pure oxygen, even when additional nutrients were present. A fed-batch process permitted the juice concentration to be increased from 15 to 82%; biomass accumulation was three times higher than in batch fermentations. However, the cellular lipid content was only 30% of dry weight, and chemical oxygen demand reduction was slow and inefficient.  相似文献   

10.
A simple method of production of total RNA from baker’s yeast was developed. Total RNA was isolated from yeast (Saccharomyces cerevisiae) biomass using lysis with sodium dodecyl sulfate at 100°C for 40–60 min and subsequent precipitation of the target product with 3 M NaCl. The preparation obtained was characterized in detail: yield of total RNA from 1 kg of pressed yeast, 9.25 g; optical density at 260 nm of 1 mg of RNA dissolved in 1 ml of water, 20.2 U; content of the acid-soluble fraction, 2.02%; and protein content, 1.8%. Total tRNA was isolated from total RNA by fractional precipitation with ethanol followed by gel filtration.  相似文献   

11.
The efficacy of the yeastKloeckera apiculata strain 34–9 to control the natural incidence of postharvest decay of citrus fruit under laboratory and commercial conditions was evaluated. Small-scale experiments with citrus fruit dipped into the yeast cell suspension were carried out to test its inhibitory effect, and the development of decay in citrus was effectively inhibited. The yeast was compatible with a low concentration of a commonly used fungicide. In packinghouse tests, combining the yeast with 40 mg/L MBC (Carbendazim) resulted in a reduction in the incidence of decay, caused by the green and blue moulds (Penicillium digitatum andPenicillium italicum, respectively), equal to a conventional fungicide treatment of 200 mg/L MBC. In commercial packinghouse tests, the efficacy ofK. apiculata strain 34–9 could be maintained to be effective in controlling the decay of several cultivars under packing-house conditions at a cell concentration of the yeast antagonist 3×108 cells/mL. In all experiments, after storage at 5 °C for 90 days,K. apiculata strain 34–9 did not alter any quality parameters of fruit.  相似文献   

12.
The development of a xylose-fermentingSaccharomyces cerevisiae yeast would be of great benefit to the bioethanol industry. The conversion of xylose to ethanol involves a cascade of enzymatic reactions and processes. Xylose (aldose) reductases catalyse the conversion of xylose to xylitol. The aim of this study was to clone, characterise and express a cDNA copy of a novel aldose reductase (NCAR-X) from the filamentous fungusNeurospora crassa inS. cerevisiae. NCAR-X harbours an open reading frame (ORF) of 900 nucleotides. This ORF encodes a protein (NCAR-X, assigned NCBI protein accession ID: XP_956921) consisting of 300 amino acids, with a predicted molecular weight of 34 kDa. TheNCAR-X-encoded aldose reductase showed significant homology to the xylose reductases ofCandida tenuis andPichia stipitis. WhenNCAR-X was expressed under the control of phosphoglycerate kinase I gene (PGK1) regulatory sequences inS. cerevisiae, its expression resulted in the production of biologically active xylose reductase. Small-scale oxygen-limited xylose fermentation with theNCAR-X containingS. cerevisiae strains resulted in the production of less xylitol and at least 15% more ethanol than the strains transformed with theP. stipitis xylose reductase gene (PsXYL1). TheNCAR-X-encoded enzyme produced byS. cerevisiae was NADPH-dependent and no activity was observed in the presence of NADH. The co-expression of theNCAR-X andPsXYL1 gene constructs inS. cerevisiae constituted an important part of an extensive research program aimed at the development of xylolytic yeast strains capable of producing ethanol from plant biomass.  相似文献   

13.
Screening of lactose-fermenting yeast strains has been conducted among 162 strains isolated from various plants and 28 strains isolated from cheese. Four yeast strains fermented lactose and were identified as Candida kefyr. The specific β-galactoside activity of the studied strains was 1501–2113 IU/g dry biomass. The ability of strains C. kefyr C24 and C30 to produce ethanol from lactose was significantly inhibited by the increase in substrate concentration (100 g/L).  相似文献   

14.
Polysaccharides and ganoderic acids (GAs) are the major bioactive constituents of Ganoderma species. However, the commercialization of their production was limited by low yield in the submerged culture of Ganoderma despite improvement made in recent years. In this work, twelve Ganoderma strains were screened to efficiently produce polysaccharides and GAs, and Ganoderma lucidum 5.26 (GL 5.26) that had been never reported in fermentation process was found to be most efficient among the tested stains. Then, the fermentation medium was optimized for GL 5.26 by statistical method. Firstly, glucose and yeast extract were found to be the optimum carbon source and nitrogen source according to the single-factor tests. Ferric sulfate was found to have significant effect on GL 5.26 biomass production according to the results of Plackett–Burman design. The concentrations of glucose, yeast extract and ferric sulfate were further optimized by response surface methodology. The optimum medium composition was 55 g/L of glucose, 14 g/L of yeast extract, 0.3 g/L of ferric acid, with other medium components unchanged. The optimized medium was testified in the 10-L bioreactor, and the production of biomass, IPS, total GAs and GA-T enhanced by 85, 27, 49 and 93 %, respectively, compared to the initial medium. The fermentation process was scaled up to 300-L bioreactor; it showed good IPS (3.6 g/L) and GAs (670 mg/L) production. The biomass was 23.9 g/L in 300-L bioreactor, which was the highest biomass production in pilot scale. According to this study, the strain GL 5.26 showed good fermentation property by optimizing the medium. It might be a candidate industrial strain by further process optimization and scale-up study.  相似文献   

15.
Three clonal rhizomatous graminoids (Carex gracilis, C. vesicaria andCalamagrostis canescens) co-dominants of Central European marshlands, were examined for their response to waterlogging. A three-year growth study was carried with treatments where the water level was (a) below, (b) at, and (c) above the soil surface to assess the changes in allocation of plant biomass and modular structure. In waterlogged plants total biomass production was lower. The relatively greater shoot systems of waterlogged plants were characterized by the production of a greater number of tiller modules (of the order of 20%). Roots were the most supressed organs both in sedges andC. canescens. Higher leaf area ratios and specific leaf areas in stressed plants indicate the relative enlargement of photosynthetic structures where stems form a significant component of the shoot (LWR <0.5 as inCalamagrostis) in unstressed conditions; above-ground biomass in stressed plants decreased. But where leaves form a major part of the shoot (LWR>0.5 as in sedges) then above-ground biomass and rhizomes in stressed plants increased and leaf area index became higher. Variation of the mean module biomass in particular species was also associated with the LWR characteristics: modules ofCarex gracilis andC. vesicaria were stable in biomass in all the treatments and reached 0.97±0.04 g and 0.44±0.03 g, respectively; inCalamagrostis the biomass of tillers varied. The number of modules increased in all species under waterlogging regardless of the architectural and reallocation differences between species. The increase in clonal modules is regarded as a general adaptive response to the stress of waterlogging.  相似文献   

16.
Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.  相似文献   

17.
Plankton community structure was analysed during spring at four stations along a transect from the polar ice into open waters of the Barents Sea. The transect mimicks a time span of months in the biological succession during the Arctic summer. The significance of the microbial food web vs the more classical food web was evaluated using carbon budget models. The standing stocks of diatom-dominated phytoplankton and bacteria were generally high especially in connection to ice. The biomass of microzooplankton, dominated by heterotrophic dinoflagellates was significantly high, with specific growth rates following the in situ temperature. The mean ± SE specific growth rate was 0.40±0.12 d?1 for ciliates and 0.24 ± 0.05 d?1 for heterotrophic dinoflagellates, indicating no food limitation. The estimated total carbon requirement for microzooplankton was, at the ice-covered station, approximately 100% of the daily primary production, decreasing to 25% in the open water. Carbon-specific secondary production of the copepodsCalanus finmarchicus (Gunnerus),C. glacialis (Jaschnov),C. hyperboreus (Krøyer) andMetridia longa (Lubbock) were analysed by egg production.C. finmarchicus andM. longa were productive at all stations, including the ice-covered locations, with a maximum at 0.08 d?1 and 0.035 d?1, respectively. The other, more Arctic-related,Calanus spp. were virtually outspawned. The standing stock of copepods was only 10–20% of the total microbial grazer biomass. The community growth and grazing by copepods showed significantly less quantitative importance for the pelagic carbon flow than the microbial processes.  相似文献   

18.
The present study explores the production of biodiesel, a sustainable replacement for depleting fossil fuel by utilizing microbial oil, which was procured from Yarrowia lipolytica employing chicken tallow as the carbon substrate. Chicken tallow, yeast extract, and MgSO4·7H2O were screened for biomass production through Plackett–Burman design. Further, Box–Behnken design analysis was performed, and the optimal concentration of the medium variables was found to be 20 g/L of chicken tallow, 7.0 g/L of yeast extract, and 0.45 g/L of MgSO4·7H2O.The various parameters viz., pH (6), temperature (30 °C), RPM (150), inoculum volume (5%, v/v), and C/N ratio (100) were optimized for maximal biomass and lipid yield, and lipid content. Nile red-stained cells were observed for intracellular lipid bodies using fluorescence microscopy, and its fluorescence intensity was measured bythe flow cytometer. The dimorphic transition and substrate assimilation of Y. lipolytica were analyzed using scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR). Batch kinetic studies revealed the concomitant synthesis of microbial lipid (4.16 g/L), lipase (43 U/mL), and biosurfactant (1.41 g/L). The GC-MS analysis of microbial oil presented the fatty acid profile as oleic acid (49.15%), palmitic acid (29.83%), stearic acid (11.43%), linoleic acid (3.83%), palmitoleic acid (3.77%), and myristic acid (1.32%).  相似文献   

19.
Chlorella vulgaris is considered as one of the potential sources of biomass for bio-based products because it consists of large amounts of carbohydrates. In this study, hydrothermal acid hydrolysis with five different acids (hydrochloric acid, nitric acid, peracetic acid, phosphoric acid, and sulfuric acid) was carried out to produce fermentable sugars (glucose, galactose). The hydrothermal acid hydrolysis by hydrochloric acid showed the highest sugar production. C. vulgaris was hydrolyzed with various concentrations of hydrochloric acid [0.5–10 % (w/w)] and microalgal biomass [20–140 g/L (w/v)] at 121 °C for 20 min. Among the concentrations examined, 2 % hydrochloric acid with 100 g/L biomass yielded the highest conversion of carbohydrates (92.5 %) into reducing sugars. The hydrolysate thus produced from C. vulgaris was fermented using the yeast Brettanomyces custersii H1-603 and obtained bioethanol yield of 0.37 g/g of algal sugars.  相似文献   

20.
The survival of four strains of yeast belonging to the speciesSaccharomyces cerevisiae, Candida wickerhamii, Candida boidinii andWilliopsis californica was studied in extra virgin olive oil flavoured with garlic, lemon, oregano and red chilli pepper. The ingredients used in the doses of 1%, 5% and 10% profoundly modified the habitat of the extra virgin olive oil, reducing drastically, in 90 days of storage, the survival of the yeasts by 20–50%, in the following decreasing order: lemon, garlic, oregano and red chilli pepper. Among the yeasts studied,W. californica strain 1639 was found to be one of the most sensitive, whileS. cerevisiae strain 1525 was one of the most tolerant regarding the ingredients present in the flavoured olive oil. The observations carried out with a scanning electron microscope (SEM) highlighted the presence of frequent lesions on the cellular wall ofC. wickerhamii 1532,C. boidinii 1638 andS. cerevisiae 1525 and only in a few rare cases inW. californica 1639. Nevertheless, since the survival ofW. californica 1639 in the flavoured olive oil was compromised to a greater extent in respect to the other species, it is plausible to deduct that the damage to the cellular wall represents only one of the causes responsible for the death of the yeasts in the flavoured olive oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号