首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
2.
Spermatogenesis in Marsilea vestita is a rapid process that is activated by placing dry microspores into water. Nine division cycles produce seven somatic cells and 32 spermatids, where size and position define identity. Spermatids undergo de novo formation of basal bodies in a particle known as a blepharoplast. We are interested in mechanisms responsible for spermatogenous initial formation. Mago nashi (Mv-mago) is a highly conserved gene present as stored mRNA and stored protein in the microspore. Mv-mago protein increases in abundance during development and it localizes at discrete cytoplasmic foci (Mago-dots). RNA interference experiments show that new Mv-mago protein is required for development. With Mv-mago silenced, asymmetric divisions become symmetric, cell fate is disrupted, and development stops. The alpha-tubulin protein distribution, centrin translation, and Mv-PRP19 mRNA distribution are no longer restricted to the spermatogenous cells. Centrin aggregations, resembling blepharoplasts, occur in jacket cells. Mago-dots are undetectable after the silencing of Mv-mago, Mv-Y14, or Mv-eIF4AIII, three core components of the exon junction complex (EJC), suggesting that Mago-dots are either EJCs in the cytoplasm, or Mv-mago protein aggregations dependent on EJCs. Mv-mago protein and other EJC components apparently function in cell fate determination in developing male gametophytes of M. vestita.  相似文献   

3.
4.
采用透射电镜技术和免疫荧光标记技术对水蕨精子发生的超微结构以及中心体蛋白和微管蛋白在精子发生过程中的动态表达进行了观察。研究发现:(1)生毛体分化早期周围有放射状微管分布,这与线粒体向生毛体的聚集有关。(2)免疫荧光观察表明,中心体蛋白仅定位于生毛体、基体和鞭毛带上,自生毛体至基体阶段呈现明亮的荧光标记,在核塑形、鞭毛形成至精子成熟阶段,中心体蛋白荧光标记随着鞭毛的发生而逐渐减弱,至游动精子阶段中心体蛋白荧光标记信号几乎消失。(3)微管蛋白早期荧光标记与中心体蛋白标记形相同,在生毛体、鞭毛带、基体等运动细胞器上呈现明亮荧光标记,但微管蛋白随着鞭毛的发生其荧光标记越来越强。从二者的时空表达特征可以推断,中心体蛋白主要是运动细胞器的组织者,而非这些运动细胞器的结构成分,其功能是参与或负责中心粒、基体和鞭毛的发生。  相似文献   

5.
6.
Specific inhibition of gene expression by exogenous homologous double-stranded RNA (dsRNA) in invertebrates and in the early development of vertebrates is termed RNA interference. Cultured cells were cotransfected with reporter plasmids and dsRNA. The inhibitory effect on reporter gene expression depended on the extent of homology between dsRNA and the target gene. RNA interference was also studied in cells cotransfected with plasmids directing synthesis of sense and antisense RNAs. Production of antisense RNA only slightly inhibited expression of the reporter gene. Simultaneous expression of both sense and antisense RNAs caused by cotransfection by corresponding plasmids did not inhibit expression of the reporter construct.  相似文献   

7.
Specific inhibition of gene expression by exogenous homologous double-stranded RNA (dsRNA) in invertebrates and in the early development of vertebrates is termed RNA interference. Cultured cells were cotransfected with reporter plasmids and dsRNA. The inhibitor effect on reporter gene expression depended on the extent of homology between dsRNA and the target gene. RNA interference was also studied in cells cotransfected with plasmids directing synthesis of sense and antisense RNAs. Production of antisense RNA only slightly inhibited expression of the reporter gene. Simultaneous expression of both sense and antisense RNAs from a special plasmid did not inhibit expression of the reporter construct.  相似文献   

8.
9.
A quantitative procedure involving RNA-RNA hybridization kinetics was developed for measurement of specific mRNA accumulated in particular tissues and cells. Two types of riboprobes for quantitating mouse beta-tubulin mRNA were prepared; one was a truncated RNA covering only the coding portion of beta-tubulin cDNA and the other was a non-truncated RNA covering the vector portion as well as the coding portion. These antisense RNAs were hybridized with the mouse brain RNA, yielding heat-stable hybrids. The truncated and non-truncated antisense RNA probes showed similar hybridization kinetics. Hybridization of the sense RNA, consisting of the beta-tubulin coding portion, with the antisense RNA probe gave standards for determining the proportion of beta-tubulin mRNA in total brain RNA. By this method, the amounts of beta-tubulin mRNA included in the brains of mice of 10 and 50 days old were quantitated.  相似文献   

10.
A quantitative procedure by a solution hybridization involving RNA-RNA hybridization kinetics was developed for measurement of specific mRNA accumulated in particular tissues and cells. For quantitating mouse beta-tubulin mRNA two types of riboprobes were prepared: one was a truncated RNA covering only the coding portion of beta-tubulin cDNA and the other was a non-truncated RNA covering the vector portion as well as the coding portion. These antisense RNAs were hybridized with mouse brain total cellular RNA, yielding heat-stable hybrids. Both the truncated and non-truncated antisense RNA probes showed similar hybridization kinetics. Hybridization of the sense RNA, consisting of the beta-tubulin coding portion, with the antisense RNA probe gave standards for determining the proportion of beta-tubulin mRNA in total brain RNA. By this method, the amounts of beta-tubulin mRNA included in the brains of 10- and 50-day-old mice were quantitated to be 0.0056 and 0.0011% of total RNA, respectively.  相似文献   

11.
Parrish S  Fleenor J  Xu S  Mello C  Fire A 《Molecular cell》2000,6(5):1077-1087
In RNA-mediated interference (RNAi), externally provided mixtures of sense and antisense RNA trigger concerted degradation of homologous cellular RNAs. We show that RNAi requires duplex formation between the two trigger strands, that the duplex must include a region of identity between trigger and target RNAs, and that duplexes as short as 26 bp can trigger RNAi. Consistent with in vitro observations, a fraction of input dsRNA is converted in vivo to short segments of approximately 25 nt. Interference assays with modified dsRNAs indicate precise chemical requirements for both bases and backbone of the RNA trigger. Strikingly, certain modifications are well tolerated on the sense, but not the antisense, strand, indicating that the two trigger strands have distinct roles in the interference process.  相似文献   

12.
Yang D  Lu H  Erickson JW 《Current biology : CB》2000,10(19):1191-1200
BACKGROUND: RNA interference (RNAi) is a phenomenon in which introduced double-stranded RNAs (dsRNAs) silence gene expression through specific degradation of their cognate mRNAs. Recent analyses in vitro suggest that dsRNAs may be copied, or converted, into 21-23 nucleotide (nt) guide RNAs that direct the nucleases responsible for RNAi to their homologous mRNA targets. Such small RNAs are also associated with gene silencing in plants. RESULTS: We developed a quantitative single-embryo assay to examine the mechanism of RNAi in vivo. We found that dsRNA rapidly induced mRNA degradation. A fraction of dsRNAs were converted into 21-23 nt RNAs, and their time of appearance and persistence correlated precisely with inhibition of expression. The strength of RNAi increased disproportionately with increasing dsRNA length, but an 80bp dsRNA was capable of effective gene silencing. RNAi was saturated at low dsRNA concentration and inhibited by excess unrelated dsRNA. The antisense strand of the dsRNA determined target specificity, and excess complementary sense or antisense single-stranded RNAs (ssRNAs) competed with the RNAi reaction. CONCLUSIONS: Processed dsRNAs can act directly to mediate RNAi, with the antisense strand determining mRNA target specificity. The involvement of 21-23 nt RNAs is supported by the kinetics of the processing reaction and the observed size dependence. RNAi depends on a limiting factor, possibly the nuclease that generates the 21-23 mer species. The active moiety appears to contain both sense and antisense RNA strands.  相似文献   

13.
14.
刘宁  刘建武 《植物学报》2004,21(2):164-171
介绍了近年来蕨类植物游动精子运动器和细胞骨架的研究进展。游动精子由配子体精子器中的非运动细胞发育形成,其分化过程包括了运动器官和细胞骨架的合成和组装。精子发生过程中形成的运动器的各部分结构包括鞭毛、基体、多层结构及附属结构;基体是细胞中新形成的结构,在不同类群的蕨类植物中分别由双中心粒、分支生毛体和生毛体产生。鞭毛、基体和多层结构中的微管带形成了游动精子三个独特的微管列阵,由于微管蛋白的后修饰作用这些微管列阵十分稳定;centrin是运动器中的重要成分, 但功能尚不清楚,可能和细胞骨架及运动器的构建有关。  相似文献   

15.
16.
Introduction of a constitutive antisense full-length chalcone synthase (CHS) cDNA gene in petunia can result in an inhibition of flower pigmentation. We have evaluated some of the factors which may be important for the effectiveness of an antisense CHS gene.Antisense CHS genes encoding half-length or quarter-length RNA complementary to the 3 half of CHS mRNA are able to affect flower pigmentation, while a gene encoding RNA complementary to the 5 half of CHS mRNA did not show phenotypic effects in transgenic petunia plants. We demonstrate that the RNA encoded by the latter gene has a much lower average steady-state level in leaf tissue than the RNAs encoded by the other antisense gene constructs. We have compared the CaMV 35S and endogenous CHS promoter strengths and intrinsic stabilities of sense and antisense CHS RNAs. From the data we conclude that the constitutive antisense CHS genes are not likely to provide an excess of antisense RNA compared to the CHS mRNA derived from the endogenous genes.Effective inhibition of flower pigmentation is also observed when the antisense CHS gene is under control of the homologous CHS promoter. The results indicate that the mechanism of antisense inhibition cannot solely operate via RNA duplex formation between sense and antisense RNA.  相似文献   

17.
Antisense RNA inhibits splicing of pre-mRNA in vitro.   总被引:17,自引:4,他引:13       下载免费PDF全文
S H Munroe 《The EMBO journal》1988,7(8):2523-2532
Antisense RNAs complementary to human beta-globin pre-mRNA or to a chimeric globin/adenovirus E2a pre-mRNA specifically and efficiently inhibit pre-mRNA splicing in vitro. The level of inhibition depends on the length, position and concentration of the antisense RNA relative to the pre-mRNA substrate. Antisense RNAs complementary to sequences greater than 80 nucleotides downstream of the globin 3' splice site inhibit at least as efficiently as those extending across the splice sites. Thus splicing is sensitive to perturbations involving exon sequences some distance from the splice sites. Inhibition is mediated by factors which affect the annealing of antisense and substrate RNAs. Direct analysis of RNA duplex formation demonstrates the presence of an activity in HeLa cell nuclear extract which promotes the rapid annealing of complementary RNAs in an ATP-independent manner. Both annealing and inhibition are greatly reduced when antisense RNA is added to the splicing reaction greater than or equal to 5 min after substrate. This result may reflect a transition between an open structure, in which annealing of antisense RNA with pre-mRNA is facilitated, and a closed complex in which pre-mRNA is sequestered at an early stage of spliceosome assembly.  相似文献   

18.
Specific mRNA degradation mediated by double-stranded RNA (dsRNA), which is termed RNA interference (RNAi), is a useful tool with which to study gene function in several systems. We report here that in mouse oocytes, RNAi provides a suitable and robust approach to study the function of dormant maternal mRNAs. Mos (originally known as c-mos) and tissue plasminogen activator (tPA, Plat) mRNAs are dormant maternal mRNAs that are recruited during oocyte maturation; translation of Mos mRNA results in the activation of MAP kinase. dsRNA directed towards Mos or Plat mRNAs in mouse oocytes effectively results in the specific reduction of the targeted mRNA in both a time- and concentration-dependent manner. Moreover, dsRNA is more potent than either sense or antisense RNAs. Targeting the Mos mRNA results in inhibiting the appearance of MAP kinase activity and can result in parthenogenetic activation. Mos dsRNA, therefore, faithfully phenocopies the Mos null mutant. Targeting the Plat mRNA with Plat dsRNA results in inhibiting production of tPA activity. Finally, effective reduction of the Mos and Plat mRNA is observed with stoichiometric amounts of Mos and Plat dsRNA, respectively.  相似文献   

19.
The Efficacy of RNAi in the Study of the Plant Cytoskeleton   总被引:3,自引:0,他引:3  
Recent studies on a variety of organisms point to the ubiquity of RNA interference (RNAi) as a means to induce a gene-specific block to translation. RNAi has gained popularity in the last few years in the study of a number of problems in development. In this review, we highlight recent findings with RNAi using several different kinds of animals and fungi, and we show how these responses parallel cosuppression effects described in plants nearly a decade earlier. We then point to the efficacy of RNAi in studying minor and regulatory components of the plant cytoskeleton, and we highlight some recent studies using this approach with the water fern, Marsilea vestita.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号