首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of biological activities in the reduction and volatilization of Hg(II) from a polluted pond was investigated. Elemental mercury was evolved from pond water immediately following spiking with203Hg(NO3)2, whereas an acclimation period of 36 hours was required in control samples collected from a nearby, unpolluted river before onset of volatilization. Genes encoding the bacterial mercuric reductase enzyme (mer genes) were abundant in DNA fractions extracted from biomass of the pond microbial community, but not in samples extracted from control communities. Thus, evolution of Hg0 was probably due to activities mediated by the bacterial mercuric reductase. Of four characterizedmer operons, the system encoded by transposon 501 (mer(Tn501)) dominated and likely contributed to the majority of the observed Hg(II) volatilization. Thus,mer-mediated reduction and volatilization could be used to reduce Hg(II) concentrations in polluted waters, in turn decreasing rates of methylmercury formation by limiting substrate availability.  相似文献   

2.
Summary The DNA sequences of the mercuric resistance determinants of plasmid R100 and transposon Tn501 distal to the gene (merA) coding for mercuric reductase have been determined. These 1.4 kilobase (kb) regions show 79% identity in their nucleotide sequence and in both sequences two common potential coding sequences have been identified. In R100, the end of the homologous sequence is disrupted by an 11.2 kb segment of DNA which encodes the sulfonamide and streptomycin resistance determinants of Tn21. This insert contains terminal inverted repeat sequences and is flanked by a 5 base pair (bp) direct repeat. The first of the common potential coding sequences is likely to be that of the merD gene. Induction experiments and mercury volatilization studies demonstrate an enhancing but non-essential role for these merA-distal coding sequences in mercury resistance and volatilization. The potential coding sequences have predicted codon usages similar to those found in other Tn501 and R100 mer genes.  相似文献   

3.
4.
5.
6.
7.
Kholodii G  Bogdanova E 《Genetica》2002,115(2):233-241
Escherichia coli K12 containing the transposon Tn5044 mer operon (merR, T, P, C, and A genes) is resistant to mercuric chloride at 30°C but sensitive to this compound at 37–41.5°C. We have studied the mechanism underlying the temperature-sensitive nature of this mercury resistance phenotype, and found that the expression of the Tn5044 merA gene coding for mercuric reductase (MerA) is severely inhibited at non-permissive temperatures. Additionally, MerA showed a considerably reduced functional activity in vivo at non-permissive temperatures. However, the temperature-sensitive character of the functioning of this enzyme in cell extracts, where it interacted with one of the low-molecular weight SH compounds rather than with the transport protein MerT (as is the case in vivo), was not apparent. These data suggest that the temperature-sensitive mercury resistance phenotype should stay under control at two stages: when the merA gene is expressed and when its product interacts with MerT to accept the mercuric ion.  相似文献   

8.
Summary A broad-spectrum mercury resistance locus (mer) from a spontaneous chloramphenicol-sensitive (Cms), arginine auxotrophic (Arg) mutant of Streptomyces lividan 1326 was isolated on a 6 kb DNA fragment by shotgun cloning into the mercury-sensitive derivative S. lividans TK64 using the vector pIJ702. The mer genes form part of a very large amplifiable DNA sequence present in S. lividans 1326. This element was amplified to about 20 copies per chromosome in the Cms Arg mutant and was missing from strains like S. lividans TK64, cured for the plasmid SLP3. DNA sequence analysis of a 5 kb region encompassing the whole region required for broad-spectrum mercury resistance revealed six open reading frames (ORFs) transcribed in opposite directions from a common intercistronic region. The protein sequences predicted from the two ORFs transcribed in one direction showed a high degree of similarity to mercuric reductase and organomercurial lyase from other gram-negative and gram-positive sources. Few, if any, similarities were found between the predicted polypeptide sequences of the other four ORFs and other known proteins.  相似文献   

9.
Mercury (Hg) resistance is widespread among microorganisms and is based on the intracellular transformation of Hg(II) to less toxic elemental Hg(0). The use of microbial consortia to demercurize polluted wastewater streams and environments has been demonstrated. To develop efficient and versatile microbial cleanup strategies requires detailed knowledge of transport and reaction rates. This study focuses on the kinetics of the key enzyme of the microbial transformation, e.g., the mercuric reductase (MerA) under conditions closely resembling the cell interior. To this end, previously constructed and characterized Pseudomonas putida strains expressing MerA from Serratia marcescens were applied. Of the P. putida strains considered in this study P. putida KT2442::mer73 constitutively expressing broad spectrum mercury resistance (merTPAB) yielded the highest mercuric reductase (MerA) activity directly after cell disruption. MerA in the raw extract was further purified (about 100 fold). Reduction rates were measured for various substrates (HgCl2, Hg2SO4, Hg(NO3)2 and phenyl mercury acetate) up to high concentrations dependent on the purification grade. In all cases, a pronounced substrate inhibition was found. The kinetic constants determined for the cell raw extract are in agreement with those measured for intact cells. However, the rate data exhibit reduced affinity and inhibition with rising purification grade (specific activity). Therefore, the findings seemingly point to reactions preceding the catalytic reduction. Based on simplified assumptions, a kinetic model is suggested which reasonably describes the experimental findings and can advantageously be applied to the bioreactor design.  相似文献   

10.
In order to test an alternative selectable marker system for the production of transgenic peanut plants (Arachis hypogaea), the bacterial mercuric ion reductase gene, merA, was introduced into embryogenic cultures via microprojectile bombardment. MerA reduces toxic Hg(II) to the volatile and less toxic metallic mercury molecule, Hg(0), and renders its source Gram-negative bacterium mercury resistant. A codon-modified version of the merA gene, MerApe9, was cloned into a plant expression cassette containing the ACT2 promoter from Arabidopsis thaliana and the NOS terminator. The expression cassette also was inserted into a second vector containing the hygromycin resistance gene driven by the UBI3 promoter from potato. Stable transgenic plants were recovered through hygromycin-based selection from somatic embryo tissues bombarded with the plasmid containing both genes. However, no transgenic somatic embryos were recovered from selection on 50-100 micromol/L HgCl2. Expression of merA as mRNA was detected by Northern blot analysis in leaf tissues of transgenic peanut, but not in somatic embryos. Western blot analysis showed the production of the mercuric ion reductase protein in leaf tissues. Differential responses to HgCl2 of embryo-derived explants from segregating R1 seeds of one transgenic line also were observed.  相似文献   

11.
Pseudomonas strain K-62 was found to contain six plasmids. A mutant derivative cured of the 26-kb plasmid showed a higher sensitivity to mercurials; however, the strain was still able to volatilize them. Loss of the 68-kb plasmid.in addition to the 26-kb plasmid abolished the ability of mercury volatilization in this strain and led to a further decrease in the level of mercurial resistance. These results are the first to demonstrate that the organomercurial resistance of Pseudomonas strain K-62 is plasmid-based, and that both the 26- and 68-kb plasmids are required for full expression of the mercurial resistance. Probes specific for the mer genes merA, merB, and merR strongly hybridized with the 26-kb plasmid, but not with the 68-kb plasmid. Two fragments of the 26-kb plasmid that hybridized with the mer genes were cloned and expressed in Escherichia coli. One recombinant plasmid (pMRA17) inducibly encoded a typical broad-spectrum mercurial resistance, whereas the other recombinant plasmid (pMRB01) constitutively conferred hypersensitivity to phenylmercury in the absence of mercuric reductase activity. The results suggest that the two organomercurial lyases in the cells are transcribed from different operator-promoters.  相似文献   

12.
Effect of catabolite repression on the mer operon   总被引:4,自引:2,他引:2       下载免费PDF全文
The plasmid-determined mer operon, which provides resistance to inorganic mercury compounds, was subject to a 2.5-fold decrease in expression when glucose was administered at the same time as the inducer HgCl2. This glucose-mediated transient repression of the operon was overcome by the addition of cyclic AMP. Permanent catabolite repression of the operon was observed in the 1.6- to 1.9-fold decrease in expression in mutants lacking either adenyl cyclase (cya) or the catabolite activator protein (crp). The effect of the cya mutation on mer expression could be overcome by the addition of cyclic AMP at the time of induction, In addition to these effects on the whole cells of a wild-type strains, we examined the effect of catabolite repression on the expression of the mercuric ion [Hg(II)] reductase enzyme, assayable in cell extracts, and on the Hg(II) uptake system, assayable in a mutant strain which lacked reductase activity. There was a two- to threefold effect of repression on the Hg(II) reductase enzyme assayable in vitro after induction under catabolite repressing conditions (either with glucose or in the crp and cya mutants). We did not find a similar repressing effect on the induction of the Hg(II) uptake system, which is also determined by the mer operon.  相似文献   

13.
Mercury is one of the most hazardous heavy metals and is a particular problem in aquatic ecosystems, where organic mercury is biomagnified in the food chain. Previous studies demonstrated that transgenic model plants expressing a modified mercuric ion reductase gene from bacteria could detoxify mercury by converting the more toxic and reductive ionic form [Hg(II)] to less toxic elemental mercury [Hg(0)]. To further investigate if a genetic engineering approach for mercury phytoremediation can be effective in trees with a greater potential in riparian ecosystems, we generated transgenic Eastern cottonwood (Populus deltoides) trees expressing modified merA9 and merA18 genes. Leaf sections from transgenic plantlets produced adventitious shoots in the presence of 50 microm Hg(II) supplied as HgCl2, which inhibited shoot induction from leaf explants of wild-type plantlets. Transgenic shoots cultured in a medium containing 25 microm Hg(II) showed normal growth and rooted, while wild-type shoots were killed. When the transgenic cottonwood plantlets were exposed to Hg(II), they evolved 2-4-fold the amount of Hg(0) relative to wild-type plantlets. Transgenic merA9 and merA18 plants accumulated significantly higher biomass than control plants on a Georgia Piedmont soil contaminated with 40 p.p.m. Hg(II). Our results indicate that Eastern cottonwood plants expressing the bacterial mercuric ion reductase gene have potential as candidates for in situ remediation of mercury-contaminated soils or wastewater.  相似文献   

14.
Mercury and organomercurial resistance determined by genes on ten Pseudomonas aeruginosa plasmids and one Pseudomonas putida plasmid have been studied with regard to the range of substrates and the range of inducers. The plasmidless strains were sensitive to growth inhibition by Hg(2+) and did not volatilize Hg(0) from Hg(2+). A strain with plasmid RP1 (which does not confer resistance to Hg(2+)) similarly did not volatilize mercury. All 10 plasmids determine mercury resistance by way of an inducible enzyme system. Hg(2+) was reduced to Hg(0), which is insoluble in water and rapidly volatilizes from the growth medium. Plasmids pMG1, pMG2, R26, R933, R93-1, and pVS1 in P. aeruginosa and MER in P. putida conferred resistance to and the ability to volatilize mercury from Hg(2+), but strains with these plasmids were sensitive to and could not volatilize mercury from the organomercurials methylmercury, ethylmercury, phenylmercury, and thimerosal. These plasmids, in addition, conferred resistance to the organomercurials merbromin, p-hydroxymercuribenzoate, and fluorescein mercuric acetate. The other plasmids, FP2, R38, R3108, and pVS2, determined resistance to and decomposition of a range of organomercurials, including methylmercury, ethylmercury, phenylmercury, and thimerosal. These plasmids also conferred resistance to the organomercurials merbromin, p-hydroxymercuribenzoate, and fluorescein mercuric acetate by a mechanism not involving degradation. In all cases, organomercurial decomposition and mercury volatilization were induced by exposure to Hg(2+) or organomercurials. The plasmids differed in the relative efficacy of inducers. Hg(2+) resistance with strains that are organomercurial sensitive appeared to be induced preferentially by Hg(2+) and only poorly by organomercurials to which the cells are sensitive. However, the organomercurials p-hydroxymercuribenzoate, merbromin, and fluorescein mercuric acetate were strong gratuitous inducers but not substrates for the Hg(2+) volatilization system. With strains resistant to phenylmercury and thimerosal, these organomercurials were both inducers and substrates.  相似文献   

15.
微生物中存在一类抗汞细菌,操纵子Mer中的MerRTPA参与细菌抗汞的调控、转运及还原。汞通过MerTP所表达的蛋白由细胞外转运至细胞内,经还原酶MerA将其还原为毒性小的可挥发的金属汞。细菌抗汞基因的形成有着古老的起源,基因间的整合、转移进化形成了Mer操纵子结构与功能的多样性。抗汞细菌对汞的吸附具有高选择性及专一性,可利用此特性对汞污染环境进行修复,也可作为分子遗传操作中稳定的抗性筛选标记。  相似文献   

16.
17.
A mutant of plasmid R100-1, which conferred cellular hypersensitivity to Hg2+ because of the insertion of Tn801 (TnA) into the gene determining synthesis of mercuric reductase enzyme, allowed further mutational events to be selected which resulted in either reversion to Hg2+ resistance (characteristic plasmid R100-1) or sensitivity at a level characteristic of plasmidless strains. Restriction endonuclease EcoRI and BamHI analysis showed that reversion to resistance resulted from loss of TnA from the R100-mer:Tn801 plasmid, whereas the change from hypersensitivity to sensitivity to Hg2+ usually resulted from deletion of part or all of Tn801 plus plasmid deoxyribonucleic acid sequences corresponding to the operator-proximal end of the mer operon.  相似文献   

18.
Bacterial resistances to inorganic mercury salts and organomercurials.   总被引:11,自引:0,他引:11  
T K Misra 《Plasmid》1992,27(1):4-16
  相似文献   

19.
Resistance to mercuric ions in bacteria is conferred by mercuric reductase, which reduces Hg(II) to Hg(0) in the cytoplasmic compartment. Specific mercuric ion transport systems exist to take up Hg(II) salts and deliver them to the active site of the reductase. This short review discusses the role of transport proteins in resistance and the mechanism of transfer of Hg(II) between the mercury-resistance proteins.  相似文献   

20.
The small (116 amino acids) inner membrane protein MerT encoded by the transposon Tn501 has been overexpressed under the control of the bacteriophage T7 expression system. Random mutants of MerT were made and screened for loss of mercuric ion hypersensitivity. Several mutantmerT genes were selected and sequenced: Cys24Arg and Cys25Tyr mutations abolish mercury resistance, as do charge-substitution mutations in the first predicted transmembrane helix (Glyl4Arg, Glyl5Arg, Gly27Arg, Ala18Asp), and the termination mutations Trp66Ter and Cys82Ter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号