首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Prolidase deficiency (PD) is a recessive disorder of the connective tissue caused by mutations in the prolidase, a specific peptidase, cleaving the dipeptides with a C-terminal prolyl and hydroxyprolyl residue. PD is a complex syndrome characterized mainly by intractable skin lesions, recurrent respiratory infections and mental retardation. The relation between prolidase biological functions and the disease is still largely unknown. We studied the effect of a prolidase inhibitor, N-benzyloxycarbonyl-l-proline (Cbz-Pro), in vitro on prolidase from human fibroblasts and in vivo on murine erythrocytes prolidase. A 90% inhibition was detected incubating cellular extracts at 1:1 ratio of Gly-Pro substrate: Cbz-Pro inhibitor. Pulse experiments performed incubating human fibroblasts with 6 mM Cbz-Pro revealed that the inhibitor uptake was completed in about 1 min. The Cbz-Pro uptake was saturable and pH dependent. Long-term incubation of fibroblasts with Cbz-Pro caused mitochondria depolarization and increased cellular death as reported for long-term culture of fibroblasts from PD patients. An inhibitory effect of Cbz-Pro has also been shown in vivo. Our results demonstrated that Cbz-Pro is a potent inhibitor of prolidase in cultured fibroblasts and it can be used in vivo to better characterize the prolidase enzyme and further investigate PD physiopathology.  相似文献   

2.
Prolidase is the only human enzyme responsible for the digestion of iminodipeptides containing proline or hydroxyproline at their C-terminal end, being a key player in extracellular matrix remodeling. Prolidase deficiency (PD) is an intractable loss of function disease, characterized by mutations in the prolidase gene. The exact causes of activity impairment in mutant prolidase are still unknown. We generated three recombinant prolidase forms, hRecProl-231delY, hRecProl-E412K and hRecProl-G448R, reproducing three mutations identified in homozygous PD patients. The enzymes showed very low catalytic efficiency, thermal instability and changes in protein conformation. No variation of Mn(II) cofactor affinity was detected for hRecProl-E412K; a compromised ability to bind the cofactor was found in hRecProl-231delY and Mn(II) was totally absent in hRecProl-G448R. Furthermore, local structure perturbations for all three mutants were predicted by in silico analysis. Our biochemical investigation of the three causative alleles identified in perturbed folding/instability, and in consequent partial prolidase degradation, the main reasons for enzyme inactivity. Based on the above considerations we were able to rescue part of the prolidase activity in patients’ fibroblasts through the induction of Heath Shock Proteins expression, hinting at new promising avenues for PD treatment.  相似文献   

3.
Prolidase gene (PEPD) encodes prolidase enzyme, which is responsible for hydrolysis of dipeptides containing proline or hydroxypro-line at their C-terminal end. Mutations in PEPD gene cause, in human, prolidase deficiency (PD), a rare autosomal recessive disorder. PD patients show reduced or absent prolidase activity and a broad spectrum of phenotypic traits including various degrees of mental retardation. This is the first report correlating PD and brain damages using as a model system prolidase deficient mice, the so called dark-like (dal) mutant mice. We focused our attention on dal postnatal brain development, revealing a panel of different morphological defects in the cerebral and cerebellar cortices, such as undulations of the cerebral cortex, cell rarefaction, defects in cerebellar cortex lobulation, and blood vessels overgrowth. These anomalies might be ascribed to altered angiogenic process and loss of pial basement membrane integrity. Further studies will be directed to find a correlation between neuroarchitecture alterations and functional consequences.Key words: Mental retardation, prolidase deficiency, postnatal development, CNS alteration, cardiac hypertrophy, extracellular matrix  相似文献   

4.
Mutations in the PINK1 gene are the second most common cause after parkin of autosomal recessive early-onset Parkinson’s disease (PD). PINK1 is a protein kinase that is localized to the mitochondrion and is ubiquitously expressed in the human brain. Recent studies aimed at elucidating the function of PINK1, have found that it has neuroprotective properties against mitochondrial dysfunction and proteasomally-induced apoptosis. In the present study, we aimed to investigate the prevalence of PINK1 genetic variants in 154 South African PD patients from all ethnic groups. Mutation screening was performed using the High-Resolution Melt technique and direct sequencing. A total of 16 sequence variants were identified: one known homozygous mutation (Y258X), two heterozygous missense variants (P305A and E476K), and 13 polymorphisms of which five were novel. No homozygous exonic deletions were detected. The novel P305A variant was found in a female patient of Black Xhosa ethnicity who has a positive family history of the disease and an age at onset of 30 years. This variant has the potential to modulate enzymatic activity due to its location in the kinase domain. This is the first report on mutation screening of PINK1 in the South African population. Results from the present study showed that point mutations and homozygous exonic deletions in PINK1 are not a common cause of PD in the South African population.  相似文献   

5.
Prolidase (EC 3.4.13.9) is a ubiquitously distributed imidodipeptidase that catalyzes the hydrolysis of C-terminal proline or hydroxyproline containing dipeptides. The enzyme plays an important role in the recycling of proline for collagen synthesis and cell growth. An increase in enzyme activity is correlated with increased rates of collagen turnover indicative of extracellular matrix (ECM) remodeling, but the mechanism linking prolidase activity and ECM is poorly understood. Thus, the effect of ECM-cell interaction on intracellular prolidase activity is of special interest. In cultured human skin fibroblasts, the interaction with ECM and, more specifically, type I collagen mediated by the β1 integrin receptor regulates cellular prolidase activity. Supporting evidence comes from the following observations: 1) in sparse cells with a low amount of ECM collagen or in confluent cells in which ECM collagen was removed by collagenase (but not by trypsin or elastase) treatment, prolidase activity was decreased; 2) this effect was reversed by the addition of type I collagen or β1 integrin antibody (agonist for β1 integrin receptor); 3) sparse cells (with typically low prolidase activity) showed increased prolidase activity when grown on plates coated with type I collagen or on type IV collagen and laminin, constituents of basement membrane; 4) the relative differences in prolidase activity due to collagenase treatment and subsequent recovery of the activity by β1 integrin antibody or type I collagen treatment were accompanied by parallel differences in the amount of the enzyme protein recovered from these cells, as shown by Western immunoblot analysis. Thus, we conclude that prolidase activity responded to ECM metabolism (tissue remodeling) through signals mediated by the integrin receptor. J. Cell. Biochem. 67:166–175, 1997. Published 1997 Wiley-Liss, Inc.  相似文献   

6.
Prolidase (E.C.3.4.13.9) cleaves iminodipeptides. Prolidase deficiency (PD; McKusick 170100) is an autosomal recessive disorder with highly variable penetrance. We have identified two novel alleles in the prolidase gene (PEPD) by direct sequencing of PCR-amplified cDNA from a PD individual asymptomatic at age 11 years: a 551G-->A transition in exon 8 (R184Q) and a 833G-->A transition in exon 12 (G278D). To assess the biochemical phenotypes of these and two previously identified PEPD mutations (G448R and delE452), we have designed a transient-expression system for prolidase in COS-1 cells. The enzyme was expressed as a fusion protein carrying an N-terminal tag, the HA1 epitope of influenza hemagglutinin, allowing its immunological discrimination from the endogenous enzyme with a monoclonal antibody. Expression of the R184Q mutation produced 7.4% of control enzymatic activity whereas the expression of the G278D, G448R, and delE452 mutations produced inactive enzymes. Western analysis of the R184Q, G278D, and G448R prolidases revealed stable immunoreactive material whereas the delE452 prolidase was not detectable. Pulse-chase metabolic labeling of cells followed by immunoprecipitation revealed that the delE452 mutant protein was synthesized but had an increased rate of degradation.  相似文献   

7.

Background

Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD). The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy.

Methodology/Principal Findings

In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7), as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T) and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and controls under basal conditions and decreased to a similar extent under paraquat-induced stress.

Conclusions

Our results indicate that Parkin mutations cause abnormal mitochondrial function and morphology in non-neuronal human cells.  相似文献   

8.
Lupi A  Tenni R  Rossi A  Cetta G  Forlino A 《Amino acids》2008,35(4):739-752
Here we summarized what is known at the present about function, structure and effect of mutations in the human prolidase. Among the peptidases, prolidase is the only metalloenzyme that cleaves the iminodipeptides containing a proline or hydroxyproline residue at the C-terminal end. It is relevant in the latest stage of protein catabolism, particularly of those molecules rich in imino acids such as collagens, thus being involved in matrix remodelling. Beside its intracellular functions, prolidase has an antitoxic effect against some organophosphorus molecules, can be used in dietary industry as bitterness reducing agent and recently has been used as target enzyme for specific melanoma prodrug activation. Recombinant human prolidase was produced in prokaryotic and eukaryotic hosts with biochemical properties similar to the endogenous enzyme and represents a valid tool both to better understand the structure and biological function of the enzyme and to develop an enzyme replacement therapy for the prolidase deficiency (PD). Prolidase deficiency is a rare recessive disorder caused by mutations in the prolidase gene and characterized by severe skin lesions. Single amino acid substitutions, exon splicing, deletions and a duplication were described as causative for the disease and are mainly located at highly conserved amino acids in the sequence of prolidase from different species. The pathophysiology of PD is still poorly understood; we offer here a review of the molecular mechanisms so far hypothesized.  相似文献   

9.
BackgroundThe cell cycle checkpoint kinase 2 (CHEK2) protein participates in the DNA damage response in many cell types. Germline mutations in CHEK2 (1100delC, IVS2+1G>A and I157T) have been impaired serine/threonine kinase activity and associated with a range of cancer types. This hospital-based case–control study aimed to investigate whether CHEK2 1100delC, IVS2+1G>A and I157T mutations play an important role in the development of colorectal cancer (CRC) in Turkish population.MethodsA total of 210 CRC cases and 446 cancer-free controls were genotyped for CHEK2 mutations by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and allele specific-polymerase chain reaction (AS-PCR) methods.ResultsWe did not find the CHEK2 1100delC, IVS2+1G>A and I157T mutations in any of the Turkish subjects.ConclusionOur result demonstrate for the first time that CHEK2 1100delC, IVS2+1G>A and I157T mutations have not been agenetic susceptibility factor for CRC in the Turkish population. Overall, our data suggest that genotyping of CHEK2 mutations in clinical settings in the Turkish population should not be recommended. However, independent studies are need to validate our findings in a larger series, as well as in patients of different ethnic origins.  相似文献   

10.
Prolidase [EC 3.4.13.9] is a ubiquitously distributed imidodipeptidase that catalyzes the hydrolysis of C-terminal proline-containing dipeptides. The enzyme plays an important role in the recycling of proline for collagen synthesis and cell growth. Although, the increase in the enzyme activity is correlated with increased rate of collagen turnover, the mechanism by which prolidase is regulated remain largely unknown. In the present study we found that phosphorylation of fibroblast's prolidase may be an underlying mechanism for up regulation of the enzyme activity. Supporting evidence comes from the following observations: (1) immunoprecipitated prolidase was detected as a phosphotyrosine protein as shown by western immunoblot analysis, (2) tyrosine kinase inhibitor – erbstatin induced (in a dose dependent manner) a decrease in prolidase activity in cultured human skin fibroblasts, (3) anti-phosphotyrosine antibody reduced and phosphotyrosine phosphatase 1B antibody (anti-PTP 1B) increased (in a dose dependent manner) the prolidase activity in extract of fibroblast's homogenate, (4) decrease in prolidase activity from collagenase treated or serum starved fibroblasts can be partially prevented by incubating fibroblast's homogenate extract with anti-PTP 1B antibody. These results provide evidence that prolidase is phosphotyrosine enzyme and suggest that the activity of prolidase may be up regulated by the enzyme phosphorylation.  相似文献   

11.
12.
PINK1 and Parkin mutations cause recessive Parkinson's disease (PD). In Drosophila and SH-SY5Y cells, Parkin is recruited by PINK1 to damaged mitochondria, where it ubiquitinates Mitofusins and consequently promotes mitochondrial fission and mitophagy.Here, we investigated the impact of mutations in endogenous PINK1 and Parkin on the ubiquitination of mitochondrial fusion and fission factors and the mitochondrial network structure. Treating control fibroblasts with mitochondrial membrane potential (Δψ) inhibitors or H(2)O(2) resulted in ubiquitination of Mfn1/2 but not of OPA1 or Fis1. Ubiquitination of Mitofusins through the PINK1/Parkin pathway was observed within 1 h of treatment. Upon combined inhibition of Δψ and the ubiquitin proteasome system (UPS), no ubiquitination of Mitofusins was detected. Regarding morphological changes, we observed a trend towards increased mitochondrial branching in PD patient cells upon mitochondrial stress.For the first time in PD patient-derived cells, we demonstrate that mutations in PINK1 and Parkin impair ubiquitination of Mitofusins. In the presence of UPS inhibitors, ubiquitinated Mitofusin is deubiquitinated by the UPS but not degraded, suggesting that the UPS is involved in Mitofusin degradation.  相似文献   

13.
Niemann-Pick type C disease (NPC) is a rare neurodegenerative disorder characterised by lysosomal/late endosomal accumulation of endocytosed unesterified cholesterol and delayed induction of cholesterol homeostatic reactions. The large majority of mutations in the NPC1 gene described thus far have been associated with severe cellular cholesterol trafficking impairment (classic biochemical phenotype, present in about 85% of NPC patients). In our population of 13 unrelated NP-C1 patients, among which 12 were of Portuguese extraction, we observed an unusually large proportion of families presenting mild alterations of intracellular cholesterol transport (variant biochemical phenotype), without strict correlation between the biochemical phenotype and the clinical expression of the disease. Mutational studies were carried out to compare molecular lesions associated with severe and mild cholesterol traffic impairment. Levels of NPC1 protein were studied by Western blot in cultured fibroblasts of four patients with homozygous mutant alleles. Ten novel mutations were identified (Q92R, C177Y, R518W, W942C, R978C, A1035V, 2129delA, 3662delT, IVS23+1 G>A and IVS16-82 G>A). The mutational profile appeared to be correlated with the biochemical phenotype. Splicing mutations, I1061T and A1035V, corresponded to "classic" alleles, while three missense mutations, C177Y, R978C and P1007A, could be defined as "variant" alleles. All "variant" mutations described so far appear to be clustered within the cysteine-rich luminal loop between TM 8 and 9, with the remarkable exception of C177Y. The latter mutant allele, at variance with P1007A, was correlated to a decreased level of NPC1 protein and a severe course of the disease, and disclosed a new location for "variant" mutations, the luminal loop located at the N-terminal end of the protein.  相似文献   

14.
15.
The cytotoxic effect of 5-fluorouracil (5-FU) is mediated by the inhibition of thymidylate synthase (TS), however, at the same time 5-FU is catabolized by dihydropyrimidine dehydrogenase (DPD). Efficacy of 5-FU may therefore depend on the TS and DPD activity and on pharmacogenetic factors influencing these enzymes. Our aims were (1) to determine the distribution of DPD activity, the frequency of DPD deficiency and the DPD (IVS14+1G>A) mutation in the peripheral blood mononuclear cells of colorectal cancer (CRC) patients, and study the relationship between DPD deficiency and toxicity of 5-FU; (2) to investigate the influence of TS polymorphisms and DPD activity on the survival of CRC patients receiving 5-FU-based adjuvant therapy. The frequency of DPD deficiency was determined by radiochemical methods in the peripheral blood mononuclear cells (PBMCs) of 764 CRC patients treated with 5-FU. The relationship between the TS polymorphisms, DPD activity and the disease-free and overall survival was studied in 166 CRC patients receiving 5-FU-based adjuvant therapy. TS polymorphisms were determined in the DNA samples separated from the PBMCs, by PCR-PAGE and PCR-RFLP-PAGE (restriction fragment length polymorphism) methods. Low DPD values (<10 pmol/min/106 PBMCs) were demonstrated in 160/764 patients (20.9%), and of those DPD deficiency (<5 pmol/min/106 PBMCs) was verified in 38 patients (4.9%). In the latter group severe (>Gr 3) toxicity was found in 87%. The prevalence of the DPD IVS14+1G>A mutation among the 38 DPD-deficient patients was 7.8% (3/38) and was accompanied by severe Gr 4 toxic symptoms (neutropenia, mucositis, diarrhea). TS polymorphisms showed a relationship with the survival of CRC patients. It is important to mention that by combining the 3-3 genotypes of 5'-TSER and 3'-TSUTR polymorphisms the obtained 8 genotype combinations showed significantly different Kaplan-Meier survival curves. The evaluation of these curves with Cox regression analysis resulted in two prognostically different groups: "A" good prognosis (RR<1) and "B" bad prognosis (RR>1). The disease-free- and overall survival of these two groups were significantly different. DPD activity also showed correlation with the survival; patients with DPD activity <10 pmol/min/106 PBMCs showed significantly longer disease-free and overall survival. The determination of DPD activity proved to be a more valuable parameter in the evaluation of serious 5-FU-related toxicity compared to the IVS14+1G>A mutation analysis. According to the Cox multivariate analysis the combination of germline TS polymorphisms and DPD activity is/an independent prognostic marker of survival in CRC patients treated with adjuvant 5-FU therapy.  相似文献   

16.
17.
The mechanism of collagen biosynthesis regulation is not fully understood. The finding that prolidase plays an important role in collagen biosynthesis and phosphoenolpyruvate inhibits prolidase activity "in vitro" led to evaluate its effect on collagen biosynthesis in cultured human skin fibroblasts. Confluent fibroblasts were treated with millimolar concentrations (1-4 mM) of phosphoenolpyruvate monopotassium salt (PEP) for 24 h. It was found that PEP-dependent decrease in prolidase activity and expression was accompanied by parallel decrease in collagen biosynthesis. However, the experiments with inhibitor of PEP production, 3-mercaptopicolinate revealed no direct correlation between collagen biosynthesis and prolidase activity and expression. Since insulin-like growth factor (IGF-I) is the most potent stimulator of both collagen biosynthesis and prolidase activity, and prolidase is regulated by beta(1) integrin signaling, the effect of PEP on IGF-I receptor (IGF-IR) and beta(1) integrin receptor expressions were evaluated. It was found that the exposure of the cells to 4 mM PEP contributed to a decrease in IGF-IR and beta(1) integrin receptor expressions. The data suggest that PEP-dependent decrease of collagen biosynthesis in cultured human skin fibroblasts may undergo through depression of alpha(2)beta(1) integrin and IGF-IR signaling. The hypothetical mechanism of the role of prolidase in IGF-IR, beta(1) integrin receptor expressions, and clinical significance of the process are discussed.  相似文献   

18.
19.
Mutations of the gene for glucocerebrosidase 1 (GBA) cause Gaucher disease (GD), an autosomal recessive lysosomal storage disorder. Individuals with homozygous or heterozygous (carrier) mutations of GBA have a significantly increased risk for the development of Parkinson’s disease (PD), with clinical and pathological features that mirror the sporadic disease. The mechanisms whereby GBA mutations induce dopaminergic cell death and Lewy body formation are unknown. There is evidence of mitochondrial dysfunction and oxidative stress in PD and so we have investigated the impact of glucocerebrosidase (GCase) inhibition on these parameters to determine if there may be a relationship of GBA loss-of-function mutations to the known pathogenetic pathways in PD. We have used exposure to a specific inhibitor (conduritol-β-epoxide, CβE) of GCase activity in a human dopaminergic cell line to identify the biochemical abnormalities that follow GCase inhibition. We show that GCase inhibition leads to decreased ADP phosphorylation, reduced mitochondrial membrane potential and increased free radical formation and damage, together with accumulation of alpha-synuclein. Taken together, inhibition of GCase by CβE induces abnormalities in mitochondrial function and oxidative stress in our cell culture model. We suggest that GBA mutations and reduced GCase activity may increase the risk for PD by inducing these same abnormalities in PD brain.  相似文献   

20.
Prolidase is a Mn(2+)-dependent dipeptidase that cleaves imidodipeptides containing C-terminal proline or hydroxyproline. In humans, a lack of prolidase activity causes prolidase deficiency, a rare autosomal recessive disease, characterized by a wide range of clinical outcomes, including severe skin lesions, mental retardation, and infections of the respiratory tract. In this study, recombinant prolidase was produced as a fusion protein with an N-terminal histidine tag in eukaryotic and prokaryotic hosts and purified in a single step using immobilized metal affinity chromatography. The enzyme was characterized in terms of activity against different substrates, in the presence of various bivalent ions, in the presence of the strong inhibitor Cbz-Pro, and at different temperatures and pHs. The recombinant enzyme with and without a tag showed properties mainly indistinguishable from those of the native prolidase from fibroblast lysate. The protein yield was higher from the prokaryotic source, and a detailed long-term stability study of this enzyme at 37 degrees C was therefore undertaken. For this analysis, an 'on-column' digestion of the N-terminal His tag by Factor Xa was performed. A positive effect of Mn(2+) and GSH in the incubation mixture and high stability of the untagged enzyme are reported. Poly(ethylene glycol) and glycerol had a stabilizing effect, the latter being the more effective. In addition, no significant degradation was detected after up to 6 days of incubation with cellular lysate. Generation of the prolidase in Escherichia coli, because of its high yield, stability, and similarity to native prolidase, appears to be the best approach for future structural studies and enzyme replacement therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号