首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The samango monkey occurs at the southern limit of the range of Cercopithecus mitis. Greater climatic seasonality at this latitude results in more predictable fruiting patterns. In addition, there are no diurnal sympatric primate frugivores. Under these conditions, the diet and feeding strategies of samango monkeys would be expected to differ notably from those of central or east African C. mitis subspecies. Contrary to these expectations, the preliminary observations reported here indicate that diets of samango and blue monkeys differ only superficially in the proportions of items eaten. Similarities in feeding behaviour are especially marked during the dry season period when fruit is not abundant. Both samango and blue monkeys tend to be less selective in their choice of food species and to eat available food species regardless of their energy content; a shift toward less nutritious items such as leaves is also noted. Feeding behaviour during the summer wet season is characterized by the selection of fruits with high-energy values. A high proportion of visits by the monkeys to areas of greater food availability suggests a concentration of feeding effort in food patches and the selection of higher energy food species within patches.  相似文献   

2.
While habitat disturbance and food availability are major factors thought to determine the abundance of primates, evidence for their importance is uneven. We assessed the effects of these factors on three monkey species, guerezas ( Colobus guereza ) , blue monkeys ( Cercopithecus mitis ) and redtails ( Cercopithecus ascanius ), in four areas of the Kakamega Forest, Kenya. Group densities of guerezas and blue monkeys were higher in areas where disturbance levels were also higher. Food availability measured as basal area density of food trees did not correlate significantly with the group densities of any of the three monkeys. The diversity of food trees, another potential measure of food abundance did, however, correlate with group densities of guerezas and blue monkeys suggesting that food availability may positively influence monkey density, and may sometimes increase with disturbance. Group densities of redtails did not correlate with any habitat variable examined, suggesting that factors other than those we considered may have influenced the abundance of this species particularly.  相似文献   

3.
Teasing apart the components of diet selection is important for understanding an animal’s ecology. We used giving-up densities (GUDs) in artificial food patches to test whether free-ranging samango monkeys (Cercopithecus (nictitans) mitis erythrarchus) treat food and water as complementary resources and to examine dietary preferences. To assess the influence of water on the value of food, we measured harvest of peanuts from food patches augmented with water. To examine dietary preferences, we measured the harvest of peanuts (as a standard for comparing other food classes), raisins, alfalfa pellets, and either mealworms or cat food mixed into sawdust in separate food patches. In addition, we observed the samangos’ order of selection of each food. To differentiate preference from ease of encounter, we measured selectivity for peanuts in triplets of food patches containing 1) peanuts, 2) peanuts mixed with a test food (raisins, alfalfa, or mealworms), and 3) the test food. Water did not influence samango foraging. After peanuts, the samangos treated alfalfa and raisins as approximately equal. The samangos foraged on mealworms lightly and rejected cat food. When each food was mixed with peanuts, the monkeys exhibited an expanding specialist dietary strategy in which they altered their rates of encounter with their preferred foods at high resource densities. Samango monkeys at our study site are not water limited, they consistently favor high-energy foods, and they least often choose animal protein. We conclude that patch-use experiments coupled with direct observations provide a useful means for examining dietary strategy, food preferences, and water limitation.  相似文献   

4.
The microflora in the gastrointestinal tracts of wild vervet and samango monkeys (Cercopithecus aethiops and C. mitis, respectively) were studied, using fermentation acid analysis, electron microscopy, and culturing methods. The diets of the two species of monkey differ considerably, with that of the samango including a greater proportion of cellulose-rich leaf material, and this is reflected in the microflora. Volatile fatty acid measurements along the gut of both species showed that these end products of bacterial metabolism were concentrated in the cecum and colon. Electron microscopy indicated that morphologically similar bacteria were present in the cecum and colon of both species, but the samango possessed a distinct stomach microflora. Bacteria in the lumina of the four main regions of the gut of the monkeys (stomach, small intestine, cecum, and colon) were plated on a number of anaerobic media (Mann, Rogosa, and Sharp; clostridial basal; and complex media). The cecum and colon were found to contain higher numbers of microbes per gram (wet weight) of gut content than the stomach and small intestine. Microbial isolates were able to catabolize carboxymethyl cellulose and other polymers. This may aid the monkeys, particularly samangos, in the digestion of fibrous dietary components such as leaves.  相似文献   

5.
The microflora in the gastrointestinal tracts of wild vervet and samango monkeys (Cercopithecus aethiops and C. mitis, respectively) were studied, using fermentation acid analysis, electron microscopy, and culturing methods. The diets of the two species of monkey differ considerably, with that of the samango including a greater proportion of cellulose-rich leaf material, and this is reflected in the microflora. Volatile fatty acid measurements along the gut of both species showed that these end products of bacterial metabolism were concentrated in the cecum and colon. Electron microscopy indicated that morphologically similar bacteria were present in the cecum and colon of both species, but the samango possessed a distinct stomach microflora. Bacteria in the lumina of the four main regions of the gut of the monkeys (stomach, small intestine, cecum, and colon) were plated on a number of anaerobic media (Mann, Rogosa, and Sharp; clostridial basal; and complex media). The cecum and colon were found to contain higher numbers of microbes per gram (wet weight) of gut content than the stomach and small intestine. Microbial isolates were able to catabolize carboxymethyl cellulose and other polymers. This may aid the monkeys, particularly samangos, in the digestion of fibrous dietary components such as leaves.  相似文献   

6.
I studied the ranging behavior of one group of L'Hoest's monkeys (Cercopithecus lhoesti) and one group of blue monkeys (C. mitis doggetti) in the Nyungwe Forest Reserve, Rwanda. This study is the first to examine the ranging behavior of the more terrestrial L'Hoest's monkeys. Fruits composed 47% of blue monkey diet and 24% of the L'Hoest's monkey diet; terrestrial herbaceous vegetation composed 35% of the diet of the latter. While overall abundance of fruit resources in the home range and overall proportion of fruit in the diet were not related to ranging behavior in either group, temporal and spatial availability of specific fruit species was related. Measures of ranging behavior indicated a more concentrated ranging pattern when fruit resources were scarce and dietary diversity increased and when fruit resources were abundant and the groups focused on a few abundant fruit species. Current hypotheses concerning primate ranging behavior suggest that frugivorous species are expected to have greater day ranges and larger home ranges than folivorous species, and invertebrate consumption is expected to produce a more wide-ranging pattern. However, the L'Hoest's monkey group, which was more folivorous and consumed fewer invertebrates, traveled greater daily distances, had a more diverse and longer ranging pattern, and had larger home range areas than the blue monkey group in every month of the study. Both species were highly selective of forest habitats; L'Hoest's monkeys used secondary forest, while blue monkeys preferred primary forest.  相似文献   

7.
Several studies have investigated the effects of logging on primate population density, and attempted to relate density differences to changes in vegetation composition. As population density in some forest primates may be considerably influenced by dietary quality, it is important to understand how the effects of vegetation changes commonly associated with logging influence primate feeding ecology. Results are presented from a study carried out in the Budongo Forest Reserve in Uganda to investigate differences in blue monkey (Cercopithecus mitis stuhlmanni) feeding ecology in forest blocks with different logging history. Dietary composition differed between logged and unlogged forest, with a higher proportion of unripe fruit consumed in logged forest. By contrast, the proportion of young leaves, invertebrates and seeds in the diet was higher in unlogged forest. Variations in the intake of fruit was also higher in unlogged forest, but feeding patterns on other dietary items were more selective. These differences in diet reflect differences in availability of different categories of food items, as determined by tree species composition, abundance and plant phenological patterns. The observed differences between feeding ecology in logged and unlogged forest are discussed in relation to primate feeding ecology and habitat composition in Budongo.  相似文献   

8.
Many primates exhibit behavioral flexibility which allows them to adapt to environmental change and different habitat types. The golden monkey (Cercopithecus mitis kandti) is a little-studied endangered primate subspecies endemic to the Virunga massif and the Gishwati forest in central Africa. In the Virunga massif, golden monkeys are mainly found in the bamboo forest, while in the Gishwati forest they live in mixed tropical montane forest. Here we describe and compare the diet of golden monkeys in both fragments. Over 24 consecutive months from January 2017 we used scan sampling to record feeding and ranging behavior of two Virunga groups and one Gishwati group totaling ca. 240 individuals. We also examined the phenology of bamboo and fruit trees, key seasonal food plant species for the monkeys. Golden monkeys fed on more than 100 plant species. The Virunga groups were mostly folivorous (between 72.8% and 87.16% of the diet) and fed mostly on young bamboo leaves and bamboo shoots, while 48.69% of the diet of the Gishwati group consisted of fruit from 22 different tree and shrub species. Bamboo shoots and fruit are seasonally available foods and were consumed regularly throughout the period when they were available. Despite being the smallest of the three study groups, the Gishwati group had a larger home range area (150.07 ha) compared to both Virunga groups (25.24 and 91.3 ha), likely driven by the differences in availability and distribution of fruit and bamboo in the habitats. Like other blue monkey subspecies, golden monkeys appear to have a flexible dietary strategy enabling them to adjust diet and ranging behavior to local habitats and available food resources. Additional studies and continuing conservation efforts are needed to better understand how variation in feeding and ranging ecology affects reproduction, population growth, and carrying capacity.  相似文献   

9.
AimAs habitat loss continues to accelerate with global human population growth, identifying landscape characteristics that influence species occurrence is a key conservation priority in order to prevent global biodiversity loss. In South Africa, the arboreal samango monkey (Cercopithecus albogularis sp.) is threatened due to loss and fragmentation of the indigenous forests it inhabits. The aim of this study was to determine the habitat preferences of the samango monkey at different spatial scales, and to identify key conservation areas to inform management plans for this species.LocationThis study was carried out in the western Soutpansberg Mountains, which represents the northernmost population of samango monkeys within South Africa, and the only endangered subspecies (C. aschwarzi).MethodsWe used sequentially collected GPS points from two samango monkey groups followed between 2012 and 2017 to quantify the used and available habitat for this species within the western Soutpansberg Mountains. We developed 2nd‐order (selection of ranging area), 3rd‐order (selection within range), and 4th‐order (feeding site selection) resource selection functions (RSFs) to identify important habitat features at each scale. Through scale integration, we identified three key conservation areas for samango monkeys across Limpopo Province, South Africa.ResultsHabitat productivity was the most important landscape variable predicting probability of use at each order of selection, indicating the dependence of these arboreal primates on tall‐canopy indigenous forests. Critical habitat across Limpopo was highly fragmented, meaning complete isolation between subpopulations is likely.Main conclusionsUnderstanding the habitat characteristics that influence samango monkey distribution across South Africa is crucial for prioritizing critical habitat for this species. Our results indicated that large, contiguous patches of tall‐canopy indigenous forest are fundamental to samango monkey persistence. As such, protected area expansion of large forest patches and creation of forest corridors are identified as key conservation interventions for this species.  相似文献   

10.
Seeds of many Amaryllidaceae are unorthodox (recalcitrant) and toxic, and cannot survive ingestion, yet are packaged in brightly colored fruits suggestive of zoochory. Seed dispersal and germination of the understory amaryllid, Clivia miniata, were investigated in KwaZulu‐Natal, South Africa. Motion‐activated cameras revealed that samango monkeys (Cercopithecus mitis labiatus) are the primary disperser of C. miniata seeds. They eat the mesocarp and, to a lesser extent, the exocarp, and spit the large (13 mm diameter) seeds whole and cleaned onto the forest floor. Most seeds were dispersed farther than 1 m from the parent. Experimental removal of the fruit pulp had a small positive effect on the rate of seed germination, but did not affect subsequent seedling growth rates. The main advantages of monkey dispersal of Clivia seeds appear to be short‐distance dispersal away from the dense foliage of clumped parent plants and occasional long‐distance dispersal through cheek‐pouching behavior.  相似文献   

11.
Understanding how threatened species adapt their behavior to landscapes shaped by humans is increasingly important to ensuring they persist in a changing world. Matrix habitats can be shared spaces where human and nonhuman primates coexist. We set out to determine how an endemic, threatened forest specialist, the frugivorous, arboreal samango monkey (Cercopithecus albogularis labiatus), has responded to a matrix habitat made up of residential gardens and commercial plantations in Eastern Cape province, South Africa. We followed two groups from dawn to dusk for a mean of 3 days/mo for 12 mo (February 1, 2011 to January 31, 2012) using scan sampling to collect data on their diet, activity, and ranging patterns. We used resource abundance transects to describe the groups’ home ranges and monitored tree phenology to calculate fruit and seed availability indices. Monkeys from both groups consumed large quantities of exotic plant species, accounting for >50% of their overall annual diet, with seeds of the invasive black wattle (Acacia mearnsii) the most commonly consumed exotic species followed by acorns of two oak species (Quercus robur and Q. palustris.). However, monkeys responded to the availability of indigenous rather than exotic fruits and seeds and increased their consumption of exotics when indigenous fruits were less available. Although monkeys spent less time moving when feeding on exotic species compared to indigenous species, eating exotics did not free up monkeys’ time to rest or socialize, as additional time was required to process exotic foods. To offset the possible negative consequences of the monkeys’ reliance on exotic seeds, including escalating conflict between monkeys and people in gardens, we suggest gradual removal of exotic plant species in the habitat and replacement with indigenous species as one mitigation strategy.  相似文献   

12.
Understanding the determinants of a species’ range use aids in understanding their ecological requirements, which in turn facilitates designing effective conservation strategies. The ranging behaviour of golden monkeys (Cercopithecus mitis kandti) in Mgahinga Gorilla National Park, Uganda was studied from January 2003 to February 2004 to establish habitat preferences. In each 0.25 ha grid cell in the group’s home range we quantified the basal area of food trees (n = 12,133 trees), measured bamboo (Arundinaria alpina) stems (n = 103,548), and estimated vine and shrub coverage. The evaluation of habitat preferences was facilitated by the fact that only five plant species, plus invertebrates (7.5%) constituted 96.4% of the group’s foraging effort; this included bamboo (59.9%), Maesa lanceolata (18.7%), Hypericum revolutum (6.8%), Galiniera saxifraga (2.1%) and Ilex mitis (1.4%). Phenology data were collected for all five food tree species, three vines, and two shrubs. Range use generally followed food tree basal area distribution and not the distribution of bamboo, with the abundance of M. lanceolata being more closely associated with home range use than any other food plant. Bamboo was ubiquitous in distribution and a vital year‐round resource for golden monkeys, which they combined with other food items to meet their nutritional requirements. Illegal bamboo or tree extraction both pose a serious threat to the conservation of the golden monkey, but activities that affect food tree abundance will likely have the most influence on monkey persistence.  相似文献   

13.
M. Beeson 《Oecologia》1989,78(4):565-570
Summary Blue monkeys (Cercopithecus mitis nyasae Schwarz) were studied for a period of 15 months on the Zomba Plateau in Malawi, which experiences pronounced seasonality of climate. 2) As might be expected, the monkey's diet contained most protein per item, and least potential digestion inhibitors, during the warm rainy season of the Malawian summer. 3) During the period, however, from October to November, which constitutes the hottest time of the year when the greatest number of trees are flowering and fruiting, protein intake was relatively lower than at other times of year and digestion-inhibitor intake tended to be relatively higher. 4) In the same period, the monkeys ranged more widely than during the winter months, when suitable food was available on the fewest number of tree species. 5) During the winter months, which occur in the first part of the dry season, the monkeys were able to obtain a reasonably nutritious diet from foliar material and some flowers, without recourse to any significant amount of fruit. 6) It is suggested that poor quality of diet during October and November is related to increased chemical defences in edible plant parts which may be partly the result of climatic pressures, and that the monkey's flexible response reflects a high degree of sensitivity to the chemical makeup of such plant parts.  相似文献   

14.
It is commonly assumed that anti-predator vigilance by foraging animals is costly because it interrupts food searching and handling time, leading to a reduction in feeding rate. When food handling does not require visual attention, however, a forager may handle food while simultaneously searching for the next food item or scanning for predators. We present a simple model of this process, showing that when the length of such compatible handling time Hc is long relative to search time S, specifically Hc/S > 1, it is possible to perform vigilance without a reduction in feeding rate. We test three predictions of this model regarding the relationships between feeding rate, vigilance and the Hc/S ratio, with data collected from a wild population of social foragers (samango monkeys, Cercopithecus mitis erythrarchus). These analyses consistently support our model, including our key prediction: as Hc/S increases, the negative relationship between feeding rate and the proportion of time spent scanning becomes progressively shallower. This pattern is more strongly driven by changes in median scan duration than scan frequency. Our study thus provides a simple rule that describes the extent to which vigilance can be expected to incur a feeding rate cost.  相似文献   

15.
We investigated the relation between temporally varying resources, diet composition, and seed-handling behaviors in a group of blue monkeys (Cercopithecus mitis doggetti) in a tropical montane forest of Rwanda. Changes in diet composition were related to concurrent phenological studies of fruit-producing trees, and density and abundance of tree resources within the monkey's home range. Fruit composed nearly 50 percent of the diet. Over 50 percent of the fruits eaten had juicy fleshy pulp. Observations of seed handling behavior provided insights into the role of these animals as potential seed dispersal agents. The monkeys moved the seeds of 29 species out of parent canopies by defecating seeds intact and by potentially carrying seeds in cheek pouches and dropping them later. Seeds of 18 species were found intact in fecal piles. Our study showed community-level phenology patterns did not indicate a decrease in fruit availability during the study period, but an analysis of the preferred fruits consumed by the monkeys showed distinct periods of low fruit availability. The study period included two dry seasons; only one of these produced a period of fruit scarcity for the animals. The animals employed different strategies during times of preferred fruit scarcity. They increased consumption of leaves and other fleshy fruits, and diet diversity increased, or became mainly seed predators and diet diversity decreased. The variable responses of these monkeys to changes in food availability highlights their dietary plasticity and imposes significant variations in their role as potential seed dispersers.  相似文献   

16.
During a large serosurvey of wild-caught primates from Cameroon, we found 2 mona monkeys (Cercopithecus mona) out of 8 and 47 mustached monkeys (Cercopithecus cephus) out of 302 with human immunodeficiency virus (HIV)-simian immunodeficiency virus (SIV) cross-reactive antibodies. In this report, we describe the full-length genome sequences of two novel SIVs, designated SIVmon-99CMCML1 and SIVmus-01CM1085, isolated from one mona (CML1) and one mustached (1085) monkey, respectively. Interestingly, these viruses displayed the same genetic organization (i.e., presence of a vpu homologue) as members of the SIVcpz-HIV type 1 lineage and SIVgsn isolated from greater spot-nosed monkeys (Cercopithecus nictitans). Phylogenetic analyses of SIVmon and SIVmus revealed that these viruses were genetically distinct from other known primate lentiviruses but were more closely related to SIVgsn all across their genomes, thus forming a monophyletic lineage within the primate lentivirus family, which we designated the SIVgsn lineage. Interestingly, mona, mustached, and greater spot-nosed monkeys are phylogenetically related species belonging to three different groups of the genus Cercopithecus, the C. mona, C. cephus, and Cercopithecus mitis groups, respectively. The presence of new viruses closely related to SIVgsn in two other species reinforces the hypothesis that a recombination event between ancestral SIVs from the family Cercopithecinae is the origin of the present SIVcpz that is widespread among the chimpanzee population.  相似文献   

17.
Blue monkeys ( Cercopithecus mitis Wolf) on the Zomba Plateau, Malawi, damage exotic softwood plantations by bark-stripping. An ecological study was carried out to investigate the causes of this. The history of forestry practice on the Plateau reveals that, though bark-stripping did not start until 1976, plantation of exotic softwoods goes back to the beginning of the century. In the last 20 years the area of plantations close to the core of blue monkey habitat has increased substantially and some significant clearance of natural habitat has occurred. Bark-stripping is practised only by the groups which are in closest contact with the plantations. Its seasonality may be related to rainfall through sap quantity. There is no indication that the persistence of bark-stripping is the result of food shortage or agonistic encounters due to overcrowding. The most likely explanation for the genesis of bark-stripping is the encroachment of large blocks of plantations, combined with some clearance of natural habitat in 1973–74. The mechanism proposed for the initiation and maintenance of bark-stripping is a combination of temporary food shortage caused by travel through young plantations and a resultant acquired taste for sweet-tasting sap. Leaving areas of indigenous scrub adjacent to the core areas used by these primates and possibly the non-destruction of indigenous food trees within exotic plantations are suggested as ways of alleviating the problem in the future.  相似文献   

18.
Troops comprising a high density population of samango monkeys (Cercopithecus mitis) in Natal province, South Africa, experienced an influx of adult males during the breeding season. Observation of one troop revealed that these males competed with one another and with two resident males for access to receptive females. Although both sexes initiated copulation, attempts to do so were more often successful if female-initiated. Males did not interact with non-receptive females and there were no recorded attempts at infanticide. Male-male interactions were agonistic in the presence of receptive females and neutral at other times. No ritualized displays of dominance and subordinance were seen. The significance of these observations for male reproductive strategies is discussed.  相似文献   

19.
Using the line transect methods, I studied the primate density at Ngogo, Kibale National Park, Uganda for 18 months. Comparisons with other studies show that the population of red colobus monkeys (Procolobus rufomitratus) and blue monkeys (Cercopithecus mitis) is declining, whereas the populations of black-and-white colobus (Colobus guereza), red-tailed monkeys (Cercopithecus ascanius), grey-cheeked mangabeys (Lophocebus albigena), baboons (Papio anubis), and chimpanzees (Pan troglodytes) remain constant or slightly increase. In this paper, I compare data on density from this study to data from previous and recent censuses at Ngogo and with data from other sites in the Kibale forest to examine the stability of primate populations. Furthermore, I test the hypothesis that the changes in red colobus and blue monkey density are due to changes in the forest structure and abundance of their most selected feeding trees, and show that changes in forest composition cannot account for changes in their red colobus abundance, but that hunting by chimpanzees provides a reasonable explanation.  相似文献   

20.
Generalist primates eat many food types and shift their diet with changes in food availability. Variation in foods eaten may not, however, match variation in nutrient intake. We examined dietary variation in a generalist‐feeder, the blue monkey (Cercopithecus mitis), to see how dietary food intake related to variation in available food and nutrient intake. We used 371 all‐day focal follows from 24 adult females (three groups) in a wild rainforest population to quantify daily diet over 9 months. We measured food availability using vegetation surveys and phenology monitoring. We analyzed >700 food and fecal samples for macronutrient content. Subjects included 445 food items (species‐specific plant parts and insect morphotypes) in their diet. Variation in fruit consumption (percentage of diet and total kcal) tracked variation in availability, suggesting fruit was a preferred food type. Fruits also constituted the majority of the diet (by calories) and some fruit species were eaten more than expected based on relative availability. In contrast, few species of young leaves were eaten more than expected. Also, subjects ate fewer young leaves (based on calories consumed) when fruit or young leaves were more available, suggesting that young leaves served as fallback foods. Despite the broad range of foods in the diet, group differences in fiber digestibility, and variation that reflected food availability, subjects and groups converged on similar nutrient intakes (grand mean ± SD: 637.1 ± 104.7 kcal overall energy intake, 293.3 ± 46.9 kcal nonstructural carbohydrate, 147.8 ± 72.4 kcal lipid, 107.8 ± 12.9 kcal available protein, and 88.1 ± 17.5 kcal structural carbohydrate; N = 24 subjects). Thus, blue monkeys appear to be food composition generalists and nutrient intake specialists, using flexible feeding strategies to regulate nutrient intake. Findings highlight the importance of simultaneously examining dietary composition at both levels of foods and nutrients to understand primate feeding ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号