共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytoene synthase (Psy) and phytoene desaturase (Pds) are the first dedicated enzymes of the plant carotenoid biosynthesis pathway. We report here the organ-specific and temporal expression of PDS and PSY in tomato plants. Light increases the carotenoid content of seedlings but has little effect on PDS and PSY expression. Expression of both genes is induced in seedlings of the phytoene-accumulating mutant ghost and in wild-type seedlings treated with the Pds inhibitor norflurazon. Roots, which contain the lowest levels of carotenoids in the plant, have also the lowest levels of PDS and PSY expression. In flowers, expression of both genes and carotenoid content are higher in petals and anthers than in sepals and carpels. During flower development, expression of both PDS and PSY increases more than 10-fold immediately before anthesis. During fruit development, PSY expression increases more than 20-fold, but PDS expression increases less than threefold. We concluded that PSY and PDS are differentially regulated by stress and developmental mechanisms that control carotenoid biosynthesis in leaves, flowers, and fruits. We also report that PDS maps to chromosome 3, and thus it does not correspond to the GHOST locus, which maps to chromosome 11. 相似文献
2.
3.
Bramley PM 《Journal of experimental botany》2002,53(377):2107-2113
4.
植物类胡萝卜素代谢工程与应用 总被引:2,自引:0,他引:2
类胡萝卜素是人类所需要的重要营养成分之一,不仅具有抗氧化、预防肿瘤和心血管等疾病的作用,而且还是人体合成维生素A的前体。全球大约有280万~330万学龄前儿童出现维生素缺乏(vitaminAdeficiency,VAD)的临床症状;近2亿儿童处于半缺乏状态。通过对植物类胡萝卜素生物合成途径的解析,以及对参与这一代谢过程的酶及其调控机制的深入了解,目前已经可以通过基因工程在主要农作物中组织特异性地促进类胡萝卜素的合成与积累。从理论上已经可以利用转基因植物来减少VAD的出现。该文简要回顾近年来这一领域的研究进展。 相似文献
5.
Regulation and activation of phytoene synthase, a key enzyme in carotenoid biosynthesis, during photomorphogenesis 总被引:12,自引:0,他引:12
During photomorphogenesis in higher plants, a coordinated increase occurs in the chlorophyll and carotenoid contents. The
carotenoid level is under phytochrome control, as reflected by the light regulation of the mRNA level of phytoene synthase
(PSY), the first enzyme in the carotenoid biosynthetic pathway. We investigated PSY protein levels, enzymatic activity and
topological localization during photomorphogenesis. The results revealed that PSY protein levels and enzymatic activity increase
during de-etiolation and that the enzyme is localized at thylakoid membranes in mature chloroplasts. However, under certain
light conditions (e.g., far-red light) the increases in PSY mRNA and protein levels are not accompanied by an increase in
enzymatic activity. Under those conditions, PSY is localized in the prolamellar body fraction in a mostly enzymatically inactive
form. Subsequent illumination of dark-grown and/or in far-red light grown seedlings with white light causes the decay of these
structures and a topological relocalization of PSY to developing thylakoids which results in its enzymatic activation. This
light-dependent mechanism of enzymatic activation of PSY in carotenoid biosynthesis shares common features with the regulation
of the NADPH:protochlorophyllide oxidoreductase, the first light-regulated enzyme in chlorophyll biosynthesis. The mechanism
of regulation described here may contribute to ensuring a spatially and temporally coordinated increase in both carotenoid
and chlorophyll contents.
Received: 14 February 2000 / Accepted: 15 March 2000 相似文献
6.
Ronen G Cohen M Zamir D Hirschberg J 《The Plant journal : for cell and molecular biology》1999,17(4):341-351
7.
Cara Cara is a spontaneous bud mutation of Navel orange (Citrus. sinensis L. Osbeck) characterized by developing fruits with a pulp of bright red coloration due to the presence of lycopene. Peel of mutant fruits is however orange and indistinguishable from its parental. To elucidate the basis of lycopene accumulation in Cara Cara, we analyzed carotenoid profile and expression of three isoprenoid and nine carotenoid genes in flavedo and pulp of Cara Cara and Navel fruits throughout development and maturation. The pulp of the mutant accumulated high amounts of lycopene, but also phytoene and phytofluene, from early developmental stages. The peel of Cara Cara also accumulated phytoene and phytofluene. The expression of isoprenoid genes and of carotenoid biosynthetic genes downstream PDS (phytoene desaturase) was higher in the pulp of Cara Cara than in Navel. Not important differences in the expression of these genes were observed between the peel of both oranges. Moreover, the content of the plant hormone ABA (abscisic acid) was lower in the pulp of Cara Cara, but the expression of two genes involved in its biosynthesis was higher. The results suggest that an altered carotenoid composition may conduct to a positive feedback regulatory mechanism of carotenoid biosynthesis in citrus fruits. Increased levels of isoprenoid precursors in the mutant that could be channeled to carotenoid biosynthesis may be related to the red-fleshed phenotype of Cara Cara. 相似文献
8.
Regulation of gene expression during plant embryogenesis 总被引:57,自引:0,他引:57
9.
10.
11.
12.
Astaxanthin, a high-value ketocarotenoid is mainly used in fish aquaculture. It also has potential in human health due to its higher antioxidant capacity than beta-carotene and vitamin E. The unicellular green alga Haematococcus pluvialis is known to accumulate astaxanthin in response to environmental stresses, such as high light intensity and salt stress. Carotenoid hydroxylase plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, we report the characterization of a promoter-like region (-378 to -22 bp) of carotenoid hydroxylase gene by cloning, sequence analysis and functional verification of its 919 bp 5'-flanking region in H. pluvialis. The 5'-flanking region was characterized using micro-particle bombardment method and transient expression of LacZ reporter gene. Results of sequence analysis showed that the 5'-flanking region might have putative cis-acting elements, such as ABA (abscisic acid)-responsive element (ABRE), C-repeat/dehydration responsive element (C-repeat/DRE), ethylene-responsive element (ERE), heat-shock element (HSE), wound-responsive element (WUN-motif), gibberellin-responsive element (P-box), MYB-binding site (MBS) etc., except for typical TATA and CCAAT boxes. Results of 5' deletions construct and beta-galactosidase assays revealed that a highest promoter-like region might exist from -378 to -22 bp and some negative regulatory elements might lie in the region from -919 to -378 bp. Results of site-directed mutagenesis of a putative C-repeat/DRE and an ABRE-like motif in the promoter-like region (-378 to -22 bp) indicated that the putative C-repeat/DRE and ABRE-like motif might be important for expression of carotenoid hydroxylase gene. 相似文献
13.
14.
15.
Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii 总被引:4,自引:0,他引:4
As we had found previously that thapsigargin, an endomembrane Ca2+-ATPase inhibitor, induces production of intracellular platelet-activating factor (PAF) [Br. J. Pharmacol. 116 (1995) 2141], we decided to investigate the possible roles of intracellular PAF in nuclear factor (NF)-kappaB activation of thapsigargin-stimulated rat peritoneal macrophages. When rat peritoneal macrophages were stimulated with thapsigargin, the level of inhibitory protein of NF-kappaB-alpha (IkappaB-alpha) was decreased and the nuclear translocation of NF-kappaB was increased. The thapsigargin-induced activation of NF-kappaB was inhibited by the PAF synthesis inhibitor SK&F 98625 and the PAF antagonist E6123. Structurally unrelated PAF antagonists such as E5880 and L-652,731 also inhibited the thapsigargin-induced activation of NF-kappaB. Lipopolysaccharide (LPS)-induced activation of NF-kappaB was also suppressed by these drugs. In a culture of rat peritoneal macrophages, exogenously added PAF did not induce degradation of IkappaB-alpha. These findings suggest that the intracellular PAF produced by the stimulation with thapsigargin or LPS is involved in activation of the NF-kappaB pathway. 相似文献
16.
Regulation of GATA gene expression during vertebrate development 总被引:5,自引:0,他引:5
Burch JB 《Seminars in cell & developmental biology》2005,16(1):71-81
GATA factors regulate critical events in hematopoietic lineages (GATA-1/2/3), the heart and gut (GATA-4/5/6) and various other tissues. Transgenic approaches have revealed that GATA genes are regulated in a modular fashion by sets of enhancers that govern distinct temporal and/or spatial facets of the overall expression patterns. Efforts are underway to resolve how these GATA gene enhancers are themselves regulated in order to elucidate the genetic and molecular hierarchies that govern GATA expression in particular developmental contexts. These enhancers also afford a raft of tools that can be used to selectively perturb and probe various developmental events in transgenic animals. 相似文献
17.
A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway. 总被引:17,自引:0,他引:17
G E Bartley P V Viitanen K O Bacot P A Scolnik 《The Journal of biological chemistry》1992,267(8):5036-5039
In the initial stages of carotenoid biosynthesis in plants the enzyme phytoene synthase converts two molecules of geranylgeranyl diphosphate into phytoene, the first carotenoid of the pathway. We show here that a tomato (Lycopersicon esculentum) cDNA for a gene (Psy1) expressed during fruit ripening directs the in vitro synthesis of a 47-kDa protein which, upon import into isolated chloroplasts, is processed to a mature 42-kDa form. The imported protein is largely associated with membranes, but it can be easily solubilized by dilution or by treatment at high pH. A plasmid construct containing prokaryotic promoter and ribosome-binding sequences fused to the Psy1 cDNA complements the carotenoidless phenotype of a Rhodobacter capsulatus crtB mutant. We conclude that Psy1 encodes phytoene synthase and that this enzyme is a peripheral plastid membrane protein. 相似文献
18.
Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis. 相似文献
19.
20.
Chunxian Chen Marcio G. C. Costa Qibin Yu Gloria A. Moore Fred G. GmitterJr. 《Tree Genetics & Genomes》2010,6(6):905-914
Novel expressed and genomic members in sweet orange (Citrus sinensis [L.] Osbeck) carotenoid biosynthesis gene families have been identified through mining of an expressed sequence tags (ESTs)
database and hybridization with a bacterial artificial chromosome (BAC) library. These new expressed members included one
phytoene synthase (PSY), one phytoene desaturase (PDS), ten zeta-carotene desaturases (ZDS), one lycopene beta-cyclase (LCYB), one lycopene epsilon-cyclase (LCYE), four carotenoid beta-ring hydroxylases (CHYB), and one capsanthin/capsorubin synthase (CCS). Most unigenes with multiple ESTs, including the ones containing the known genes and these new members, were heterozygous,
in which putative single nucleotide polymorphisms distinguished two alleles. According to digital gene expression profiling,
fruit was the primary tissue where at least one member of each gene family was specifically or highly expressed. Digital expression
levels varied among the members and tissues. According to Southern hybridization of the identified BAC clones, genomic members
of the families were either clustered in a single BAC contig or distributed in several different contigs. PSY has four members in one contig, PDS two in one, ZDS 12 in three, LCYB 11 in three, LCYE three in two, CHYB eight in one, and CCS 14 in four, respectively. The number of the genomic members in most families tended to be more than that of the expressed
members, suggesting that some genomic members may not be expressed or structurally functional. These new carotenoid gene members,
along with much first-hand genomic information, can be used further for functional genomics and genetic mapping. 相似文献