首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell interactions have been studied in cultures pf hepatocytes from young and old rats. The rhythm of protein synthesis is an index of cell interaction and synchronization in culture, while the amplitude of oscillations characterized cell cooperation in an aggregate rhythm. The mean rhythm amplitude in the culture of hepatocytes from old rats is twice lower than that from young rats. Gangliosides (mixture, bovine brain gangliosides) and alpha1-adrenomimetic phenylephrine enhanced synchronization of cultures of the cells from old rats and increased the amplitude of oscillations to the level of young animals. Addition of rat blood serum (10%) to the medium revealed the rhythm of protein synthesis in the culture, asynchronous in the control, i.e., led to their synchronization. In media with young and old rat blood sera, oscillations were intense, with high amplitudes, and low, respectively. Addition of bovine brain gangliosides to a medium with old rat blood serum increased the amplitudes of oscillations to a level of the rhythm stimulated by the young rat serum. Thus, the cells of old animals can fully perceive synchronizing factors and, in the case of their increased concentration, the rhythm of protein synthesis in old animals did not differ from that in young rats. Current data on biochemical mechanisms underlying intercellular cooperation in the formation of population rhythm of protein synthesis have been discussed.  相似文献   

2.
Dense cultures of hepatocytes from old rats (~2 years old, body weight 530-610 g) are different from similar cultures of hepatocytes from young rats by the low amplitude of protein synthesis rhythm. Addition of glutamic acid (0.2, 0.4, or 0.6 mg/ml) into the culture medium with hepatocytes of old rats resulted in increase in the oscillation amplitudes of the protein synthesis rhythm to the level of young rats. A similar action of glutamic acid on the protein synthesis kinetics was observed in vivo after feeding old rats with glutamic acid. Inhibition of metabotropic receptors of glutamic acid with α-methyl-4-carboxyphenylglycine (0.01 mg/ml) abolished the effect of glutamic acid. The amplitude of oscillation of the protein synthesis rhythm in a cell population characterizes synchronization of individual oscillations caused by direct cell–cell communications. Hence, glutamic acid, acting as a receptor-dependent transmitter, enhanced direct cell–cell communications of hepatocytes that were decreased with aging. As differentiated from other known membrane signaling factors (gangliosides, norepinephrine, serotonin, dopamine), glutamic acid can penetrate into the brain and thus influence the communications and protein synthesis kinetics that are disturbed with aging not only in hepatocytes, but also in neurons.  相似文献   

3.
Ultradian oscillations of protein synthesis were used as a marker of hepatocyte synchronous cooperative activity producing a common rhythm in vitro; amplitude of the rhythm defines expression of the cell cooperation. Dense synchronous and sparse non-synchronous rat hepatocyte cultures on slides in a serum-free incubation medium 199 supplemented with 0.2 mg/ml albumin and 0.5 microg/ml insulin have been studied. The amplitude of the rhythm averaged approximately 2x in dense cultures of young (3 month old) rats than in old (2 year old) rats. But some cultures of young rats had the amplitude patterns similar to cultures of old rats, and vice versa. Addition to the medium of either 0.3 microM bovine brain gangliosides or 2 microM phenylephrine resulted in increase of the oscillation amplitude in dense cultures of old rats to the level inherent in young ones. Addition to the medium of 10% rat blood serum in non-synchronous sparse cultures from young rats resulted in detection of a protein synthetic rhythm. Although after serum from young rats, the rhythm expression was high, the rhythm after serum from old rats had been given was weak. Addition of gangliosides to old-rat serum resulted in synchronization of sparse cultures with amplitudes inherent of young-rat serum. The data tend to the conclusion that cell cooperation depends to a greater extent on the composition of the medium rather than on the age of the cell or animal.  相似文献   

4.
We studied the effects of the chelating agents of extra- and intracellular calcium ions, EGTA and BAPTA-AM, and of the inhibitor of Ca2+release from the reticulum, TMB-8, in the kinetics of protein synthesis in hepatocyte cultures. We also studied dense cultures capable of self-synchronization of protein synthesis oscillations and diluted cultures, in which synchronization is induced by phenylephrine or gangliosides (standard preparation of total gangliosides from the bovine brain). Preincubation of the diluted or dense cultures in the presence of 2 mM EGTA for 1–2 h with subsequent protein assay in a medium with EGTA did not affect the kinetics of protein synthesis: no rhythm was found in the diluted cultures, while it was preserved in the dense cultures. When the diluted cultures preincubated in the presence of EGTA were placed in a medium with EGTA and 2 M phenylephrine for 2 min, the rhythm was visualized. The treatment of diluted cultures with 100 M TMB-8 for 5 or 10 min with subsequent washing and incubation in a medium with 3 M gangliosides led to visualization of the protein synthesis rhythm, i.e., to the synchronization of oscillations, while no rhythm was found in the standard cultures. Preincubation of the diluted cultures in a medium with 10, 15, or 20 M BAPTA-AM for 1 h did not affect the kinetics of protein synthesis. When, after such preincubation, the diluted cultures were placed in the medium with gangliosides, the rhythm was visualized. In the dense cultures, normally capable of self-synchronization, no rhythm of protein synthesis was found after their treatment with 10–20 M BAPTA-AM for 1 h. The transfer of such cultures in the medium with gangliosides led to visualization of the rhythm. Thus, calcium affects the kinetics of protein synthesis: after the rise of Ca2+in the cytoplasm was blocked, the rhythm of protein synthesis was not visualized due, supposedly, to disturbed mechanisms of medium conditioning. However, exogenous gangliosides in the dense or diluted cultures preincubated in the presence of BAPTA-AM ore TMB-8 allowed the rhythm visualization, i.e., synchronization may not depend on changes in the intracellular calcium concentration.  相似文献   

5.
Primary cultures of rat hepatocytes were studied in serum-free medium. Ultradian protein synthesis rhythm was used as a marker of overall cell synchronization and cooperation amongst the population. The level of synchronization was determined by amplitudes of the rhythm. Low synchronization of old rat hepatocytes can be enhanced by addition of either gangliosides or phenylephrine to the medium. Incubation of cultures with gangliosides lasted for 2.5 h, while action of phenylephrine was only for 2 min. The amplitude of protein synthesis rhythm was increased 1.5-2 times. In cultures transferred to a fresh normal medium, this increased amplitude was observed for at least 2-3 days. Thus, both gangliosides and phenyleprine are triggers, which, as shown earlier, initiated calcium-dependent processes in the cytoplasm. The results are discussed in the light of concept of the cell self-organization by a direct cell-cell communication.  相似文献   

6.
Primary cultures of rat hepatocytes grown on slides were studied in serum-free medium. Ultradian protein synthesis rhythm was used as a marker of synchronization of individual oscillations, resulting in the formation of a common rhythm of the cell population, i.e. cell-cell self-organization. Dense synchronous and sparse non-synchronous cultures were used to estimate effect of protein kinase activity on the kinetics of protein synthesis. Treatment of dense cultures with the inhibitors H7 (40 microM) or H8 (25 microM) resulted in a loss of the protein synthesis rhythm, a suppression of the cell-cell self-organization. Stimulation of protein kinase activity with either 0.5 or 1.0 microM phorbol 12-miristate-13-acetate (PMA) or 10 microM forskolin caused the appearance of the synthetic rhythm in non-synchronous sparse cultures under otherwise normal conditions. Inhibition of protein kinase activity with H7 resulted in signal factors, such as gangliosides and phenylephrine, failing to initiate this rhythm in sparse cultures. Activation of protein kinase activity with PMA shifted the phase pattern of the protein synthesis rhythm. Thus, according to our previous and the new data, protein kinase activity and consequently protein phosphorylation is the crucial step of sequence of processes resulting in synchronization during self-organization of cells in producing a common rhythm in the population. The general pathway can be presented as follows: signaling of gangliosides or other calcium agonists-->efflux of calcium ion from intracellular stores, with elevation of calcium concentration in the cytoplasm-->activation of protein kinases-->protein phosphorylation-->synchronization of individual oscillations in protein synthesis rates-->induction of a common rhythm throughout this population. The data have been discussed concerning similarity of the direct cell-cell communication and the cell self-organization in cultures and in organism.  相似文献   

7.
We studied the effect of the 1-adrenolytic prazosine on both dense cultures of hepatocytes, which are normally characterized by the protein synthesis rhythm, and diluted cultures, in which such a rhythm is revealed after external synchronization. Exogenous gangliosides (a fraction of the total gangliosides of the bovine brain) then synchronize the rhythm in diluted cultures; this effect is also displayed in the presence of 10–7 M prazosine. The synchronizing effect of the medium conditioned by dense cultures was also preserved in the presence of prazosine. In the dense cultures that don't normally require external synchronization, prazosine intensified the rhythmic pattern of changes in the protein synthesis. After a total of 0.3 M gangliosides were introduced in the medium with prazosine-pretreated dense cultures, the protein synthesis rhythm was visualized. We propose that, while blocking adrenoreceptors, prazosine does not prevent the action of exogenous synchronizing factors on the hepatocytes, but inhibits the release of such factors from the cell.  相似文献   

8.
The kinetics of protein synthesis was investigated in primary cultures of hepatocytes from old rats in serum–free medium. The rats were fed mixed fodder supplemented with glutamic acid and then transferred to a regular mixed fodder. The amplitude of protein synthesis rhythm in hepatocytes isolated from these rats increased on average 2–fold in comparison with the rats not receiving glutamic acid supplement. Based on this indicator reflecting the degree of cell–cell interactions, the cells from old rats were not different from those of young rats. The effect was preserved for 3–4 days. These results are discussed in connection with our previous data on preservation of the effect of single administration of gangliosides, noradrenaline, serotonin, and other synchronizers on various cell populations. In contrast to the other investigated factors, glutamic acid is capable of penetrating the blood–brain barrier, which makes its effect possible not only in the case of hepatocytes and other non–brain cells, but also in neurons.  相似文献   

9.
The effect of 1 to 1000 nM melatonin was studied on daily cultures of rat hepatocytes on slides in serum-free medium. The minimum melatonin concentration (1 nM) proved to synchronize protein synthesis in asynchronous sparse cultures of hepatocytes from rats of different age, and a circahoralian rhythm of protein synthesis was revealed in them. In dense weekly synchronous hepatocytes from old rats (2.5 years old with the weight of about 600 g), melatonin improved cell synchronization to the level of young animals. Melatonin treatment increased the mean rate of protein synthesis in rats of different age.  相似文献   

10.
An ultradian oscillation of protein synthesis was detected by synchronization of metabolic activity in rat hepatocyte cultures. This oscillation occurs in dense cultures in fresh medium, but not in sparse ones. Metabolic synchronization of sparse cultures, however, was initiated by conditioned medium or addition of 0.3-0.5 microm of a mixture of bovine brain gangliosides to fresh culture medium along with either 0.06-0.2 microm GM1 or 0.1-0.2 microm GDIa. GTIb and GDIb did not produce oscillations, nor did human liver ganglioside GM3. High expression of GM1 ganglioside determinants in hepatocytes maintained in the conditioned medium purified polyclonal antibodies to GM1 was coupled with protein synthetic oscillatory activity, i.e. metabolic synchronization. Incubation of dense cultures with GM1-antibodies for 24 h decreased the amplitude of these oscillations. In sparse cultures maintained in fresh medium where protein synthesis showed no oscillatory pattern, GM1 expression was low.  相似文献   

11.
Previously we demonstrated synchronized oscillations of protein synthesis rate in hepatocyte cultures upon accumulation of monosialoganglioside GM1 in the medium or after introduction of exogenous GM1 to the medium. The synchronized oscillations of the protein synthesis rate in dense hepatocyte cultures were blocked 30 min after their treatment with 10–20 M BAPTA-AM, a chelating agent of cytoplasmic calcium. Enzyme immunoassay for GM1 demonstrated similar amounts of GM1 in the medium conditioned for 3 h by dense hepatocyte cultures pretreated with 20 M BAPTA-AM for 1 h and in the medium of normal dense cultures: 0.0060 ± 0.0005 and 0.0055 ± 0.0005 pmol/1000 cells, respectively. The content of GM1 was also similar in the normal and BAPTA-AM-pretreated hepatocytes: 0.158 ± 0.013 and 0.183 ± 0.014 pmol/1000 cells, respectively. The synchronized rhythm of protein synthesis has been confirmed in the diluted cultures in the medium conditioned by the normal dense cultures. However, the medium conditioned by the dense cultures pretreated with BAPTA-AM induced no synchronization of the diluted cultures. Since GM1 concentration was normal in this medium, we propose the effect of a physicochemical form of the gangliosides accumulated in the medium on their ability to synchronize the rhythm of protein synthesis.  相似文献   

12.
The circumhoralian rhythm of protein synthesis was determined in a monolayer culture of hepatocytes from rats at the age of 1 to 24 months and weighing from 45 to 480 g, respectively. The peptide lyvagen (Lys-Glu-Asp-Ala) obtained by directed chemical synthesis on the basis of amino acid analysis of the liver polypeptide preparations increased the level of protein synthesis in the hepatocytes from rats of different ages; the highest effect was observed in the cells of old animals. In old rats, lyvagen increased the amplitude of protein synthesis fluctuations. The peptide epitalon (Ala-Glu-Asp-Gly) constructed on the basis of analysis of the epiphysis peptides did not change the intensity of protein synthesis in the cultured hepatocytes.  相似文献   

13.
Primary cultures of rat hepatocytes were studied in serum-free media. Ultradian protein synthesis rhythm was used as a marker of cell synchronization in the population. Addition of glutamic acid (0.2 mg/ml) to the medium of nonsynchronous sparse cultures resulted in detection of a common protein synthesis rhythm, hence in synchronization of the cells. The antagonist of glutamic acid metabotropic receptors MCPG (0.01 mg/ml) added together with glutamic acid abolished the synchronization effect; in sparse cultures, no rhythm was detected. Feeding rats with glutamic acid (30 mg with food) resulted in protein synthesis rhythm in sparse cultures obtained from the rats. After feeding without glutamic acid, linear kinetics of protein synthesis was revealed. Thus, glutamic acid, a component of blood as a non-neural transmitter, can synchronize the activity of hepatocytes and can form common rhythm of protein synthesis in vitro and in vivo. This effect is realized via receptors. Mechanisms of cell–cell communication are discussed on analyzing effects of non-neural functions of neurotransmitters. Glutamic acid is used clinically in humans. Hence, a previously unknown function of this drug is revealed.  相似文献   

14.
Primary 24-hour cultures of hepatocytes on slides in a serum-free medium were studied. Circahoralian rhythm of protein synthesis served as a marker of cell cooperation. Stimulation of protein kinase activities by phorbol 12-myristate 13-acetate at 0.5 or 1.0 microM or forskolin at 10 microM led to visualization of the protein synthesis rhythm in sparse cultures, which were asynchronous in the control and with linear kinetics of protein synthesis. Inhibitors of protein kinase activities H7 (1-(5-isoquinolinylsulfonyl)-5-methylpiperasine dihydrochloride) at 40 microM or H8 (N-(2-[methylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride) at 25 microM eliminated the protein synthesis rhythm in dense cultures, which are normally synchronous with oscillatory kinetics of protein synthesis. After inhibition of the protein kinase activities, gangliosides or phenylephrine did not synchronize the protein synthesis rhythm. Phorbol 12-myristate 13-acetate modulated the protein synthesis rhythm, shifted the rhythm phase, i.e., stimulation of the protein kinase activities, and, correspondingly, protein phosphorylation may be a factor of synchronization of synthesis oscillations in individual cells and of population rhythm formation. Thus, a cascade of processes leading to self-organization of hepatocytes during formation of summarized protein synthesis was revealed in a series of studies: signal of gangliosides or other calcium agonists-->changes in the level of calcium ions in cytoplasm-->increased protein kinase activities-->protein phosphorylation-->modulation of individual oscillations in the intensity of protein synthesis and their coordination in a summarized rhythm. cAMP-dependent protein kinases also affect the protein synthesis rhythm. Protein phosphorylation is a key process. The mechanisms of cell self-organization are similar in vitro and in vivo, specifically in the liver in situ.  相似文献   

15.
The medium conditioned by dense, self-synchronized hepatocyte cultures was centrifuged at 150000 g to obtain two fractions. The light fraction (supernatant fluid) contained ganglioside monomers and micelles, and the heavy fraction (pellet) contained gangliosides in the vesicles shed from the cell membrane. In the test populations of hepatocytes, the rhythm of protein synthesis was used as an indicator of cell synchronization resulting from their cooperative activity. Diluted hepatocyte cultures with asynchronous fluctuations of protein synthesis proved to be synchronized by both the initial conditioned medium and its vesicular fraction. Our previous studies have shown that this occurs under the effect of GM1 monosialoganglioside, which is released from cultured cells and accumulated in the conditioned medium. Liposomes consisting of GM1 and phosphatidylcholine from egg yolk (1 : 19 mol%), compared to free exogenous GM1, synchronized the rhythm of protein synthesis more effectively: synchronization was observed at a GM1 concentration in liposome suspension of only 0.0003 M, compared to 0.06 M and higher in the case of free GM1. Thus, GM1 as a component of membranes and monolayer lipid structures proved to be much more effective than free GM1 in promoting hepatocyte cooperation with respect to the rhythm of protein synthesis.  相似文献   

16.
Primary 24-hour cultures of hepatocytes on slides in a serum-free medium were studied. Circahoralian rhythm of protein synthesis served as a marker of cell cooperation. Stimulation of protein kinase activities by phorbol 12-myristate 13-acetate at 0.5 or 1.0 μM or forskolin at 10 μM led to visualization of the protein synthesis rhythm in sparse cultures, which were asynchronous in the control and with linear kinetics of protein synthesis. Inhibitors of protein kinase activities H7 (1-(5-isoquinolinylsulfonyl)-5-methylpiperasine dihydrochloride) at 40 μM or H8 (N-(2-[methylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride) at 25 μM eliminated the protein synthesis rhythm in dense cultures, which are normally synchronous with oscillatory kinetics of protein synthesis. After inhibition of the protein kinase activities, gangliosides or phenylephrine did not synchronize the protein synthesis rhythm. Phorbol 12-myristate 13-acetate modulated the protein synthesis rhythm, shifted the rhythm phase, i.e., stimulation of the protein kinase activities, and, correspondingly, protein phosphorylation may be a factor of synchronization of synthesis oscillations in individual cells and of population rhythm formation. cAMP-dependent protein kinases also affect the protein synthesis rhythm. Thus, a cascade of processes leading to self-organization of hepatocytes during formation of summarized protein synthesis was revealed in a series of studies: signal of gangliosides or other calcium agonists → changes in the level of calcium ions in cytoplasm → increased protein kinase activities → protein phosphorylation → modulation of individual oscillations in the intensity of protein synthesis and their coordination in a summarized rhythm. Protein phosphorylation is a key process. The mechanisms of cell self-organization are similar in vitro and in vivo, specifically in the liver in situ.  相似文献   

17.
Recent data has extended a large array of melatonin functions by the discovery of melatonin's involvement in the organization and regulation of the rhythm of intracellular protein synthesis. An ultradian rhythm in total protein synthesis has been detected in primary hepatocyte cultures 5 min after addition of 1-5 nM melatonin to the medium. The melatonin effect was mediated via its receptors (as shown in experiments with luzindole), leading to the cell synchronization as well as the mean rate of protein synthesis rate being increased. The chain of processes synchronizing the oscillation of the rate protein synthesis throughout the hepatocyte population includes Ca2+ fluxes {experiments with BAPTA-AM [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetomethyl ester)]}. Inhibition of protein kinase activity (experiments with H7) inhibited the synchronizing function of melatonin. Activation of protein kinase activity results in a shift of the protein synthesis oscillation; the effect was the same as melatonin added to the culture medium. In another series of experiments, after melatonin was intraperitoneally injected to rat (0.015-0.020 μg/kg), hepatocytes were isolated and cultures established. A synchronizing effect of melatonin in vivo was detected as early as in the estimates from the direct action of melatonin on cell cultures. In the cultures obtained from old rats provided with melatonin, the amplitude of protein synthesis rhythm was enhanced, i.e. cell-cell interactions were increased, as well as rate of the protein synthesis being enhanced.  相似文献   

18.
Recent data concerning ultradian (circahoralian) intracellular rhythms are used to assess the biochemical mechanisms of direct cell-cell communication. New results and theoretical considerations suggest a fractal nature of ultradian rhythms and their self-organisation. The fundamental and innate nature of these rhythms relates to their self-similarity at different levels of cell and tissue organisation. They can be detected in cell-free systems as well as in cells and organs in vivo. Such rhythms are a means of finding an optimal state of cell function rather than achieving a state of absolute stability. As a consequence, oscillations, being irregular and numerous by the set of periods, are resilient to functional overload and injury. Recent data on the maintenance of their fractal structure and, especially on the selection of optimal periods are discussed. The positive role of chaotic dynamics is stressed.The ultradian rhythm of protein synthesis in hepatocytes in vitro was used as a marker of direct cell-cell communication. The system demonstrates cell cooperation and synchronisation throughout the cell population, and suggests that the ultradian rhythms are self-organised. These observations also led to the detection of mechanisms of direct cell-cell communication in which extracellular factors have an essential role. Experimental evidence indicated the involvement of gangliosides and/or catecholamines in this large-scale synchronisation of protein synthesis. The response of all, or a major part, of the cell population is important; after the initial trigger effect, a periodic pattern is retained for some time. The influence of Ca2+-dependent protein kinases on protein phosphorylation can be a final step in the phase modulation of rhythms during cell-cell synchronisation.The intercellular medium plays an important role in self-synchronisation of ultradian rhythms between individual cells. Low cooperative activity of hepatocytes of old rats resulted from altered composition of the intercellular medium rather than direct effects of animal and cellular ageing. Similarly, in the whole body, changes in levels of gangliosides and catecholamines in the blood serum, a natural intercellular medium, can be critical events in age-dependent changes of the serum and accordingly cell-cell synchronisation. Hepatocytes of old rats exhibit some of the properties of young cells following an increase in blood serum ganglioside level, as well as, in in vitro conditions, after the addition of gangliosides to the culture medium.Together with data on ultradian functional and metabolic rhythms, all the material reviewed here allows us to propose a mechanism of direct cell-cell cooperation via the medium in which the cells exist, that supplements the nervous and hormonal central regulation of organ functions. Ultradian intracellular rhythms may thus provide a finer framework within which the integrated dynamics of respiration, heart rate, brain activity, and even behavioural patterns, are brought to an optimal functional pattern. Innate and direct cell-cell cooperation may have been employed as a means of intercellular regulation during the course of metazoan evolution, that preceded nervous regulation and is presently retained in mammals.  相似文献   

19.
20.
The oscillations of the free fatty acid concentration in the serum and white (epididymal) adipose tissue, of triglycerides in the serum and liver, of total serum, liver and adrenal cholesterol and of serum phospholipids were studied at 3-hour intervals for a period of 24 hours in fed male Wistar rats and in animals fasted for 24 hours (both adapted to an illumination regimen of 12 hours' light and 12 hours' darkness. The rhythm--studied by means of the cosinor analysis--was present in most of the given parameters; it was not recorded in the liver triglycerides and serum phospholipids of fasted rats and in the adrenal cholesterol of fed animals. Apart from the circadian rhythm, many parameters distinctly displayed an ultradian rhythm, mainly an approximately 12-hour period. In general, one day's starvation did not significantly affect the course of the circadian oscillations of the given indicators of rat lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号